Advertisement

In Vitro Biomechanical Analysis of Knee Rotational Stability

  • Amir Ata Rahnemai-Azar
  • Masahito Yoshida
  • Volker Musahl
  • Richard DebskiEmail author
Chapter
  • 1.1k Downloads

Abstract

Several soft tissue structures and inherent anatomical characteristics contribute to stability of the knee. In vitro biomechanical studies provide valuable insight to the role of these factors as well as treatments to address rotational knee laxity by simulating clinical examinations and in vivo activities. The anterior cruciate ligament is a complex structure and is the main restraint for rotational laxity, and thus reconstruction surgeries should aim to restore its native anatomy. Other soft tissue structures such as the anterolateral structures and menisci also contribute as well, and injuries to these structures need to be properly assessed to achieve optimal outcomes. Findings from in vitro studies need to be appropriately coupled with in vivo studies to satisfy the ultimate goal of improving the clinical care of patients with knee ligamentous injuries.

Keywords

In vitro Biomechanics Knee ACL Rotational laxity Pivot shift 

References

  1. 1.
    Ahlden M, Araujo P, Hoshino Y, Samuelsson K, Middleton KK, Nagamune K, Karlsson J, Musahl V (2012) Clinical grading of the pivot shift test correlates best with tibial acceleration. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(4):708–712CrossRefGoogle Scholar
  2. 2.
    Ahmed AM, McLean C (2002) In vitro measurement of the restraining role of the anterior cruciate ligament during walking and stair ascent. J Biomech Eng 124(6):768–779PubMedCrossRefGoogle Scholar
  3. 3.
    Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, Davies A (2014) Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 42(9):2242–2252PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson CJ, Westerhaus BD, Pietrini SD, Ziegler CG, Wijdicks CA, Johansen S, Engebretsen L, Laprade RF (2010) Kinematic impact of anteromedial and posterolateral bundle graft fixation angles on double-bundle anterior cruciate ligament reconstructions. Am J Sports Med 38(8):1575–1583PubMedCrossRefGoogle Scholar
  5. 5.
    Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, Musahl V (2012) Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(4):692–697CrossRefGoogle Scholar
  6. 6.
    Atarod M, Frank CB, Shrive NG (2015) Increased meniscal loading after anterior cruciate ligament transection in vivo: a longitudinal study in sheep. Knee 22(1):11–17PubMedCrossRefGoogle Scholar
  7. 7.
    Bach JM, Hull ML, Patterson HA (1997) Direct measurement of strain in the posterolateral bundle of the anterior cruciate ligament. J Biomech 30(3):281–283PubMedCrossRefGoogle Scholar
  8. 8.
    Bedi A, Chen T, Santner TJ, El-Amin S, Kelly NH, Warren RF, Maher SA (2013) Changes in dynamic medial tibiofemoral contact mechanics and kinematics after injury of the anterior cruciate ligament: a cadaveric model. Proc Inst Mech Eng H 227(9):1027–1037PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 18(9):1269–1276CrossRefGoogle Scholar
  10. 10.
    Bonanzinga T, Signorelli C, Lopomo N, Grassi A, Neri MP, Filardo G, Zaffagnini S, Marcacci M (2015) Biomechanical effect of posterolateral corner sectioning after ACL injury and reconstruction. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23(10):2918–2924CrossRefGoogle Scholar
  11. 11.
    Bozynski CC, Kuroki K, Stannard JP, Smith PA, Stoker AM, Cook CR, Cook JL (2015) Evaluation of partial transection versus synovial debridement of the ACL as Novel Canine Models for Management of ACL injuries. J Knee Surg 28(5):404–410PubMedCrossRefGoogle Scholar
  12. 12.
    Cavaignac E, Carpentier K, Pailhe R, Luyckx T, Bellemans J (2015) The role of the deep medial collateral ligament in controlling rotational stability of the knee. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23(10):3101–7CrossRefGoogle Scholar
  13. 13.
    Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J (2013) Anatomy of the anterolateral ligament of the knee. J Anat 223(4):321–328PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Darcy SP, Kilger RH, Woo SL, Debski RE (2006) Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel non-invasive methodology. J Biomech 39(13):2371–2377PubMedCrossRefGoogle Scholar
  15. 15.
    Debandi A, Maeyama A, Lu S, Hume C, Asai S, Goto B, Hoshino Y, Smolinski P, Fu FH (2011) Biomechanical comparison of three anatomic ACL reconstructions in a porcine model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 19(5):728–735CrossRefGoogle Scholar
  16. 16.
    Didden K, Luyckx T, Bellemans J, Labey L, Innocenti B, Vandenneucker H (2010) Anteroposterior positioning of the tibial component and its effect on the mechanics of patellofemoral contact. J Bone Joint Surg 92(10):1466–1470CrossRefGoogle Scholar
  17. 17.
    Dombrowski M, Costello J, Ohashi B, Murawski C, Friel N, Arilla F, Rothrauff B, Fu F, Musahl V (2015) Macroscopic anatomic, histologic, and magnetic resonance imaging correlation of the lateral capsule of the knee. Paper presented at the Orthopaedic Research Society; Las VegasGoogle Scholar
  18. 18.
    Feng H, Song GY, Shen JW, Zhang H, Wang MY (2014) The “lateral gutter drive-through” sign revisited: a cadaveric study exploring its real mechanism based on the individual posterolateral structure of knee joints. Arch Orthop Trauma Surg 134(12):1745–1751PubMedCrossRefGoogle Scholar
  19. 19.
    Fening SD, Kovacic J, Kambic H, McLean S, Scott J, Miniaci A (2008) The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 21(3):205–211PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fleming BC, Beynnon BD, Tohyama H, Johnson RJ, Nichols CE, Renstrom P, Pope MH (1994) Determination of a zero strain reference for the anteromedial band of the anterior cruciate ligament. J Orthop Res Off Pub Orthop Res Soc 12(6):789–795CrossRefGoogle Scholar
  21. 21.
    Fleming BC, Peura GD, Beynnon BD (2000) Factors influencing the output of an implantable force transducer. J Biomech 33(7):889–893PubMedCrossRefGoogle Scholar
  22. 22.
    Frank CB, Beveridge JE, Huebner KD, Heard BJ, Tapper JE, O’Brien EJ, Shrive NG (2012) Complete ACL/MCL deficiency induces variable degrees of instability in sheep with specific kinematic abnormalities correlating with degrees of early osteoarthritis. J Orthop Res Off Pub Orthop Res Soc 30(3):384–392CrossRefGoogle Scholar
  23. 23.
    Fujie H, Sekito T, Orita A (2004) A novel robotic system for joint biomechanical tests: application to the human knee joint. J Biomech Eng 126(1):54–61PubMedCrossRefGoogle Scholar
  24. 24.
    Fukubayashi T, Torzilli PA, Sherman MF, Warren RF (1982) An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am 64(2):258–264PubMedGoogle Scholar
  25. 25.
    Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res Off Pub Orthop Res Soc 22(1):85–89CrossRefGoogle Scholar
  26. 26.
    Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382PubMedCrossRefGoogle Scholar
  27. 27.
    Haimes JL, Wroble RR, Grood ES, Noyes FR (1994) Role of the medial structures in the intact and anterior cruciate ligament-deficient knee. Limits of motion in the human knee. Am J Sports Med 22(3):402–409PubMedCrossRefGoogle Scholar
  28. 28.
    Hensler D, Illingworth KD, Musahl V, Working ZM, Kobayashi T, Miyawaki M, Lorenz S, Witt M, Irrgang JJ, Huard J, Fu FH (2015) Does fibrin clot really enhance graft healing after double-bundle ACL reconstruction in a caprine model? Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23(3):669–679CrossRefGoogle Scholar
  29. 29.
    Howe JG, Wertheimer C, Johnson RJ, Nichols CE, Pope MH, Beynnon B (1990) Arthroscopic strain gauge measurement of the normal anterior cruciate ligament. Arthroscopy J Arthroscopic Related Surg Off Pub Arthroscopy Asso N Am Int Arthroscopy Asso 6(3):198–204CrossRefGoogle Scholar
  30. 30.
    Hughston JC, Jacobson KE (1985) Chronic posterolateral rotatory instability of the knee. J Bone Joint Surg Am 67(3):351–359PubMedGoogle Scholar
  31. 31.
    Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy J Arthroscopic Related Surg Off Pub Arthroscopy Asso N Am Int Arthroscopy Asso 18(4):394–398CrossRefGoogle Scholar
  32. 32.
    Kato Y, Ingham SJ, Linde-Rosen M, Smolinski P, Horaguchi T, Fu FH (2010) Biomechanics of the porcine triple bundle anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 18(1):20–25CrossRefGoogle Scholar
  33. 33.
    Kiapour AM, Shalvoy MR, Murray MM, Fleming BC (2015) Validation of porcine knee as a sex-specific model to study human anterior cruciate ligament disorders. Clin Orthop Relat Res 473(2):639–650PubMedCrossRefGoogle Scholar
  34. 34.
    Kilcoyne KG, Dickens JF, Haniuk E, Cameron KL, Owens BD (2012) Epidemiology of meniscal injury associated with ACL tears in young athletes. Orthopedics 35(3):208–212PubMedCrossRefGoogle Scholar
  35. 35.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634PubMedCrossRefGoogle Scholar
  36. 36.
    Krinsky MB, Abdenour TE, Starkey C, Albo RA, Chu DA (1992) Incidence of lateral meniscus injury in professional basketball players. Am J Sports Med 20(1):17–19PubMedCrossRefGoogle Scholar
  37. 37.
    Krukhaug Y, Molster A, Rodt A, Strand T (1998) Lateral ligament injuries of the knee. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 6(1):21–25CrossRefGoogle Scholar
  38. 38.
    LaPrade RF, Resig S, Wentorf F, Lewis JL (1999) The effects of grade III posterolateral knee complex injuries on anterior cruciate ligament graft force. A biomechanical analysis. Am J Sports Med 27(4):469–475PubMedGoogle Scholar
  39. 39.
    Levy IM, Torzilli PA, Gould JD, Warren RF (1989) The effect of lateral meniscectomy on motion of the knee. J Bone Joint Surg Am 71(3):401–406PubMedGoogle Scholar
  40. 40.
    Levy IM, Torzilli PA, Warren RF (1982) The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 64(6):883–888PubMedGoogle Scholar
  41. 41.
    Lew WD, Lewis JL (1982) The effect of knee-prosthesis geometry on cruciate ligament mechanics during flexion. J Bone Joint Surg Am 64(5):734–739PubMedGoogle Scholar
  42. 42.
    Lipke JM, Janecki CJ, Nelson CL, McLeod P, Thompson C, Thompson J, Haynes DW (1981) The role of incompetence of the anterior cruciate and lateral ligaments in anterolateral and anteromedial instability. A biomechanical study of cadaver knees. J Bone Joint Surg Am 63(6):954–960PubMedGoogle Scholar
  43. 43.
    Livesay GA, Fujie H, Kashiwaguchi S, Morrow DA, Fu FH, Woo SL (1995) Determination of the in situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng 23(4):467–474PubMedCrossRefGoogle Scholar
  44. 44.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769PubMedCrossRefGoogle Scholar
  45. 45.
    Luyckx T, Didden K, Vandenneucker H, Labey L, Innocenti B, Bellemans J (2009) Is there a biomechanical explanation for anterior knee pain in patients with patella alta?: influence of patellar height on patellofemoral contact force, contact area and contact pressure. J Bone Joint Surg 91(3):344–350CrossRefGoogle Scholar
  46. 46.
    Markolf KL, Jackson SR, Foster B, McAllister DR (2014) ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle. J Orthop Res Off Pub Orthop Res Soc 32(1):89–95CrossRefGoogle Scholar
  47. 47.
    Markolf KL, Park S, Jackson SR, McAllister DR (2008) Simulated pivot-shift testing with single and double-bundle anterior cruciate ligament reconstructions. J Bone Joint Surg Am 90(8):1681–1689PubMedCrossRefGoogle Scholar
  48. 48.
    Markolf KL, Willems MJ, Jackson SR, Finerman GA (1998) In situ calibration of miniature sensors implanted into the anterior cruciate ligament part II: force probe measurements. J Orthop Res Off Pub Orthop Res Soc 16(4):464–471CrossRefGoogle Scholar
  49. 49.
    Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg 72(5):816–821Google Scholar
  50. 50.
    Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ, D’Arrigo C (2012) Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(5):870–877CrossRefGoogle Scholar
  51. 51.
    Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3(1):51–61PubMedCrossRefGoogle Scholar
  52. 52.
    Musahl V, Burkart A, Debski RE, Van Scyoc A, Fu FH, Woo SL (2002) Accuracy of anterior cruciate ligament tunnel placement with an active robotic system: a cadaveric study. Arthroscopy J Arthroscopic Related Surg Off Pub Arthroscopy Asso N Am Int Arthroscopy Asso 18(9):968–973CrossRefGoogle Scholar
  53. 53.
    Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38(8):1591–1597PubMedCrossRefGoogle Scholar
  54. 54.
    Musahl V, Seil R, Zaffagnini S, Tashman S, Karlsson J (2012) The role of static and dynamic rotatory laxity testing in evaluating ACL injury. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(4):603–612CrossRefGoogle Scholar
  55. 55.
    Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD (2010) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 18(9):1208–1213CrossRefGoogle Scholar
  56. 56.
    Nakamura S, Kobayashi M, Asano T, Arai R, Nakagawa Y, Nakamura T (2011) Image-matching technique can detect rotational and AP instabilities in chronic ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 19(Suppl 1):S69–S76CrossRefGoogle Scholar
  57. 57.
    Nelitz M, Seitz AM, Bauer J, Reichel H, Ignatius A, Durselen L (2013) Increasing posterior tibial slope does not raise anterior cruciate ligament strain but decreases tibial rotation ability. Clini Biomech 28(3):285–290CrossRefGoogle Scholar
  58. 58.
    Noyes FR, Grood ES, Butler DL, Raterman L (1980) Knee ligament tests: what do they really mean? Phys Ther 60(12):1578–1581PubMedGoogle Scholar
  59. 59.
    Patriarco AG, Mann RW, Simon SR, Mansour JM (1981) An evaluation of the approaches of optimization models in the prediction of muscle forces during human gait. J Biomech 14(8):513–525PubMedCrossRefGoogle Scholar
  60. 60.
    Petersen W, Zantop T (2007) Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res 454:35–47PubMedCrossRefGoogle Scholar
  61. 61.
    Piziali RL, Seering WP, Nagel DA, Schurman DJ (1980) The function of the primary ligaments of the knee in anterior-posterior and medial-lateral motions. J Biomech 13(9):777–784PubMedCrossRefGoogle Scholar
  62. 62.
    Rudy TW, Livesay GA, Woo SL, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29(10):1357–1360PubMedCrossRefGoogle Scholar
  63. 63.
    Sakane M, Livesay GA, Fox RJ, Rudy TW, Runco TJ, Woo SL (1999) Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 7(2):93–97CrossRefGoogle Scholar
  64. 64.
    Scanlan SF, Chaudhari AM, Dyrby CO, Andriacchi TP (2010) Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J Biomech 43(9):1817–1822PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Seering WP, Piziali RL, Nagel DA, Schurman DJ (1980) The function of the primary ligaments of the knee in varus-valgus and axial rotation. J Biomech 13(9):785–794PubMedCrossRefGoogle Scholar
  66. 66.
    Seireg A, Arvikar (1975) The prediction of muscular lad sharing and joint forces in the lower extremities during walking. J Biomech 8(2):89–102PubMedCrossRefGoogle Scholar
  67. 67.
    Sharifah MI, Lee CL, Suraya A, Johan A, Syed AF, Tan SP (2015) Accuracy of MRI in the diagnosis of meniscal tears in patients with chronic ACL tears. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23(3):826–830CrossRefGoogle Scholar
  68. 68.
    Shoemaker SC, Adams D, Daniel DM, Woo SL (1993) Quadriceps/anterior cruciate graft interaction. An in vitro study of joint kinematics and anterior cruciate ligament graft tension. Clin Orthop Relat Res 294:379–390PubMedGoogle Scholar
  69. 69.
    Stijak L, Bumbasirevic M, Radonjic V, Kadija M, Puskas L, Milovanovic D, Filipovic B (2014) Anatomic description of the anterolateral ligament of the knee. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. doi: 10.1007/s00167-014-3422-6 Google Scholar
  70. 70.
    Sudasna S, Harnsiriwattanagit K (1990) The ligamentous structures of the posterolateral aspect of the knee. Bull Hosp Jt Dis Orthop Inst 50(1):35–40PubMedGoogle Scholar
  71. 71.
    Suero EM, Njoku IU, Voigt MR, Lin J, Koenig D, Pearle AD (2013) The role of the iliotibial band during the pivot shift test. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 21(9):2096–2100CrossRefGoogle Scholar
  72. 72.
    Tantisricharoenkul G, Linde-Rosen M, Araujo P, Zhou J, Smolinski P, Fu FH (2014) Anterior cruciate ligament: an anatomical exploration in humans and in a selection of animal species. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22(5):961–971CrossRefGoogle Scholar
  73. 73.
    van Eck CF, Widhalm H, Murawski C, Fu FH (2015) Individualized anatomic anterior cruciate ligament reconstruction. Phys Sportsmed 43(1):87–92PubMedCrossRefGoogle Scholar
  74. 74.
    van Houtem M, Clough R, Khan A, Harrison M, Blunn GW (2006) Validation of the soft tissue restraints in a force-controlled knee simulator. Proc Inst Mech Eng H 220(3):449–456PubMedCrossRefGoogle Scholar
  75. 75.
    Veltri DM, Deng XH, Torzilli PA, Maynard MJ, Warren RF (1996) The role of the popliteofibular ligament in stability of the human knee. A biomechanical study. Am J Sports Med 24(1):19–27PubMedCrossRefGoogle Scholar
  76. 76.
    Vincent JP, Magnussen RA, Gezmez F, Uguen A, Jacobi M, Weppe F, Al-Saati MF, Lustig S, Demey G, Servien E, Neyret P (2012) The anterolateral ligament of the human knee: an anatomic and histologic study. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(1):147–152CrossRefGoogle Scholar
  77. 77.
    Voos JE, Musahl V, Maak TG, Wickiewicz TL, Pearle AD (2010) Comparison of tunnel positions in single-bundle anterior cruciate ligament reconstructions using computer navigation. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 18(9):1282–1289CrossRefGoogle Scholar
  78. 78.
    Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MR, Citak M, Wickiewicz TL, Pearle AD (2012) Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(8):1626–1631CrossRefGoogle Scholar
  79. 79.
    Walker PS, Blunn GW, Broome DR, Perry J, Watkins A, Sathasivam S, Dewar ME, Paul JP (1997) A knee simulating machine for performance evaluation of total knee replacements. J Biomech 30(1):83–89PubMedCrossRefGoogle Scholar
  80. 80.
    Wang H, Chen T, Koff MF, Hutchinson ID, Gilbert S, Choi D, Warren RF, Rodeo SA, Maher SA (2014) Image based weighted center of proximity versus directly measured knee contact location during simulated gait. J Biomech 47(10):2483–2489PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Woo SL, Young EP, Ohland KJ, Marcin JP, Horibe S, Lin HC (1990) The effects of transection of the anterior cruciate ligament on healing of the medial collateral ligament. A biomechanical study of the knee in dogs. J Bone Joint Surg Am 72(3):382–392PubMedGoogle Scholar
  82. 82.
    Wroble RR, Grood ES, Cummings JS, Henderson JM, Noyes FR (1993) The role of the lateral extraarticular restraints in the anterior cruciate ligament-deficient knee. Am J Sports Med 21(2):257–262; discussion 263PubMedCrossRefGoogle Scholar
  83. 83.
    Wunschel M, Muller O, Lo J, Obloh C, Wulker N (2010) The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Arthroscopy J Arthroscopic Related Surg Off Pub Arthroscopy Asso N Am Int Arthroscopy Asso 26(11):1520–1527CrossRefGoogle Scholar
  84. 84.
    Yamamoto Y, Hsu WH, Fisk JA, Van Scyoc AH, Miura K, Woo SL (2006) Effect of the iliotibial band on knee biomechanics during a simulated pivot shift test. J Orthop Res Off Pub Orthop Res Soc 24(5):967–973CrossRefGoogle Scholar
  85. 85.
    Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35(2):223–227PubMedCrossRefGoogle Scholar
  86. 86.
    Zantop T, Schumacher T, Diermann N, Schanz S, Raschke MJ, Petersen W (2007) Anterolateral rotational knee instability: role of posterolateral structures. Winner of the AGA-DonJoy Award 2006. Arch Orthop Trauma Surg 127(9):743–752PubMedCrossRefGoogle Scholar
  87. 87.
    Zavatsky AB (1997) A kinematic-freedom analysis of a flexed-knee-stance testing rig. J Biomech 30(3):277–280PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Amir Ata Rahnemai-Azar
    • 1
    • 2
  • Masahito Yoshida
    • 1
    • 2
  • Volker Musahl
    • 3
  • Richard Debski
    • 4
    • 2
    Email author
  1. 1.Department of Orthopaedic Surgery, Department of Bioengineering, Orthopaedic Robotics LaboratoryUniversity of PittsburghPittsburghUSA
  2. 2.Department of Orthopaedic SurgeryUPMC Center for Sports Medicine, University of PittsburghPittsburghUSA
  3. 3.Department of Orthopaedic SurgeryUPMC Center for Sports MedicinePittsburghUSA
  4. 4.Department of Orthopaedic Surgery, Department of Bioengineering, Orthopaedic Robotics LaboratoryUniversity of PittsburghPittsburghUSA

Personalised recommendations