OCC: Opportunistic Crowd Computing in Mobile Social Networks

  • Hualin Mao
  • Mingjun XiaoEmail author
  • An Liu
  • Jianbo Li
  • Yawei Hu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9645)


Crowd computing is a new paradigm, in which a group of users are coordinated to deal with a huge job or huge amounts of data that one user cannot easily do. In this paper, we design an Opportunistic Crowd Computing system (OCC) for mobile social networks (MSNs). Unlike traditional crowd computing systems, the mobile users in OCC move around and communicate each other by using short-distance wireless communication mechanisms (e.g., WiFi or Bluetooth) when they encounter each other, so as to save communication costs. The key design of OCC is the task assignment scheme. Unlike the traditional crowd computing task assignment problem, the task assignment in OCC must take into consideration the users’ mobile behaviors. To solve this problem, we present an optimal user group algorithm (OUGA). It can minimize the total cost, while ensuring the task completion rates. Moreover, we conduct a performance analysis, and prove the optimality of this algorithm. In addition, the simulations show that our algorithm achieves a good performance.


Crowd computing Mobile social network Task assignment 



This research was supported in part by the National Natural Science Foundation of China (NSFC) (Grant No. 61572457, 61572336, 61502261, 61379132), and the Natural Science Foundation of Jiangsu Province in China (Grant No. BK20131174, BK2009150).


  1. 1.
    Alonso, O., Rose, D.E., Stewart, B.: Crowdsourcing for relevance evaluation. ACM SIGIR Forum Arch. 42, 9–15 (2008)CrossRefGoogle Scholar
  2. 2.
    Guo, X., Chan, E.C.L., Liu, C., Wu, K., Liu, S., Ni, L.M.: ShopProfiler: profiling shops with crowdsourcing data. In: INFOCOM, pp. 1240–1248 (2014)Google Scholar
  3. 3.
    Murray, D.G., Yoneki, E., Crowcroft, J., Hand, S.: The case for crowd computing. In: MobiHeld 10 Proceedings of the Second ACM SIGCOMM, pp. 39–44 (2010)Google Scholar
  4. 4.
    Hu, X., Li, X., Ngai, E.C., Leung, V.C., Kruchten, P.: Multidimensional context-aware social network architecture for mobile crowdsensing. IEEE Commun. Mag. 52, 78C–87 (2014)CrossRefGoogle Scholar
  5. 5.
    Li, M., Li, P.: Crowdsourcing in cyber-physical systems: stochastic optimization with strong stability. IEEE Trans. Emerg. Top. Comput. 1(2), 218–231 (2013)CrossRefGoogle Scholar
  6. 6.
    Ma, H., Zhao, D., Yuan, P.: Opportunities in mobile crowd sensing. IEEE Commun. Mag. 52(8), 29–35 (2014)CrossRefGoogle Scholar
  7. 7.
    He, S., Shin, D., Zhang, J., Chen, J.: Toward optimal allocation of location dependent tasks in crowdsensing. In: IEEE INFOCOM, pp. 745–753 (2014)Google Scholar
  8. 8.
    Weppner, J., Lukowicz, P.: Bluetooth based collaborative crowd density estimation with mobile phones. In: IEEE PerCom (2013)Google Scholar
  9. 9.
    Krontiris, I., Dimitriou, T.: Privacy-respecting discovery of data providers in crowd-sensing applications. In: IEEE DCOSS (2013)Google Scholar
  10. 10.
    Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49, 32C–39 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Jiang, Y., Jin, D., Su, L., Zeng, L., Wu, D.: Energy-efficient optimal opportunistic forwarding for delay-tolerant networks. IEEE Trans. Veh. Technol. 59, 4500–4512 (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, X., Chen, M., Han, Z., Wu, D.O., Kwon, T.T.: TOSS: traffic offloading by social network service-based opportunistic sharing in mobile social networks. In: INFOCOM, pp. 2346–2354 (2014)Google Scholar
  13. 13.
    Demirbas, M., Bayir, M., Akcora, C., Yilmaz, Y.: Crowd-sourced sensing and collaboration using twitter. In: IEEE WoWMoM, pp. 1–9 (2010)Google Scholar
  14. 14.
    Simoens, P., Xiao, Y., Pillai, P.: Scalable crowd-sourcing of video from mobile devices. In: ACM MobiSys, pp. 139–152 (2013)Google Scholar
  15. 15.
    Yang, D., Xue, G., Fang, X.: Crowdsourcing to smartphones: incentive mechanism design for mobile phone sensing. In: ACM MobiSys, pp. 173–184 (2012)Google Scholar
  16. 16.
    Hu, X., Chu, T.H.S., Chan, H.C.B., Leung, V.C.M.: Vita: a crowdsensing-oriented mobile cyber-physical system. IEEE Commun. Mag. 1, 78–87 (2014)CrossRefGoogle Scholar
  17. 17.
    Ra, M., Liu, B., Porta, T., Govindan, R.: Medusa: a programming framework for crowd-sensing applications. In: ACM MobiSys, pp. 337–350 (2012)Google Scholar
  18. 18.
    Mathur, S., Jin, T., Kasturirangan, N.: ParkNet: driveby sensing of road-side parking statistics. In: ACM MobiSys, pp. 123–136 (2010)Google Scholar
  19. 19.
    Xiao, M., Wu, J., Huang, L., Wang, Y., Liu, C.: Multi-task assignment for crowdsensing in mobile social networks. In: IEEE INFOCOM (2015)Google Scholar
  20. 20.
    Ganti, R., Pham, N., Ahmadi, H.: GreenGps: a participatory sensing fuel-efficient maps application. In: ACM MobiSys, pp. 151–164 (2010)Google Scholar
  21. 21.
    Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: ACM SenSys, pp. 323–336 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hualin Mao
    • 1
  • Mingjun Xiao
    • 1
    Email author
  • An Liu
    • 2
  • Jianbo Li
    • 3
  • Yawei Hu
    • 1
  1. 1.School of Computer Science and Technology, Suzhou Institute for Advanced StudyUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.School of Computer Science and TechnologySoochow UniversitySuzhouPeople’s Republic of China
  3. 3.School of Computer Science and TechnologyQingdao UniversityQingdaoPeople’s Republic of China

Personalised recommendations