Improving Diversity of User-Based Two-Step Recommendation Algorithm with Popularity Normalization

  • Xiangyu Zhao
  • Wei ChenEmail author
  • Feng Yang
  • Zhongqiang Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9645)


Recommender systems become increasingly significant in solving the information overload problem. Beyond conventional rating prediction and ranking prediction recommendation technologies, two-step recommendation algorithms have been demonstrated that they have outstanding accuracy performance in top-N recommendation tasks. However, their recommendation lists are biased towards popular items. In this paper, we propose a popularity normalization method to improve the diversity of user-based two-step recommendation algorithms. Experiment results show that our proposed approach improves the diversity performance significantly while maintaining the advantage of two-step recommendation approaches on accuracy metrics.


Recommender system Collaborative filtering Diversity Two-step recommendation Popularity normalization 



This work is supported by the National Key Technology R&D Program of China (project no. 2014BAD10B08).


  1. 1.
    Adamopoulos, P., Tuzhilin, A.: On over-specialization and concentration bias of recommendations: Probabilistic neighborhood selection in collaborative filtering systems.In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 153–160. ACM (2014)Google Scholar
  2. 2.
    Adomavicius, G., Kwon, Y.O.: Improving aggregate recommendation diversity using ranking-based techniques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012)CrossRefGoogle Scholar
  3. 3.
    Bradley, K., Smyth, B.: Improving recommendation diversity. In: Proceedings of the Twelfth Irish Conference on Artificial Intelligence and Cognitive Science, Maynooth, Ireland, pp. 85–94. Citeseer (2001)Google Scholar
  4. 4.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann Publishers Inc. (1998)Google Scholar
  5. 5.
    Cai, Y., Lau, R.Y.K., Liao, S.S.Y., Li, C., Leung, H.-F., Ma, L.C.K.: Object typicality for effective web of things recommendations. Decis. Support Syst. 63, 52–63 (2014)CrossRefGoogle Scholar
  6. 6.
    Cai, Y., Leung, H., Li, Q., Min, H., Tang, J., Li, J.: Typicality-based collaborative filtering recommendation. IEEE Trans. Knowl. Data Eng. 26(3), 766–779 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, W., Niu, Z., Zhao, X., Li, Y.: A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web 17(2), 271–284 (2014)CrossRefGoogle Scholar
  8. 8.
    Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the fourth ACM conference on Recommender systems, pp. 39–46. ACM (2010)Google Scholar
  9. 9.
    Delgado, J., Ishii, N.: Memory-based weighted majority prediction. In: ACM SIGIR 1999 Workshop on Recommender Systems. Citeseer (1999)Google Scholar
  10. 10.
    Ekstrand, M.D., Harper, F.M., Willemsen, M.C., Konstan, J.A.: User perception of differences in recommender algorithms. In: Proceedings of the 8th ACM Conference on Recommender systems, pp. 161–168. ACM (2014)Google Scholar
  11. 11.
    Fleder, D., Hosanagar, K.: Blockbuster culture’s next rise or fall: The impact of recommender systems on sales diversity. Manage. Sci. 55(5), 697–712 (2009)CrossRefGoogle Scholar
  12. 12.
    Garcin, F., Faltings, B., Donatsch, O., Alazzawi, A., Bruttin, C., Huber, A.: Offline and online evaluation of news recommender systems at In: Proceedings of the 8th ACM Conference on Recommender systems, pp. 169–176. ACM (2014)Google Scholar
  13. 13.
    Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22(1), 89–115 (2004)CrossRefGoogle Scholar
  14. 14.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)CrossRefGoogle Scholar
  15. 15.
    Kapoor, K., Kumar, V., Terveen, L., Konstan, J.A., Schrater, P.: I like to explore sometimes: Adapting to dynamic user novelty preferences. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 19–26. ACM (2015)Google Scholar
  16. 16.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborativefiltering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2008)Google Scholar
  17. 17.
    Koren, Y., Sill, J.: OrdRec: An ordinal model for predicting personalized item ratingdistributions. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 117–124. ACM (2011)Google Scholar
  18. 18.
    Li, X., Xie, H., Song, Y., Li, Q., Shanfeng Zhu, F., Wang, L.: Does summarization help stock prediction? News impact analysis via summarization. IEEE Intell. Syst. 30, 26–34 (2015)CrossRefGoogle Scholar
  19. 19.
    Liu, N.N., Zhao, M., Yang, Q.: Probabilistic latent preference analysis for collaborative filtering. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 759–766. ACM (2009)Google Scholar
  20. 20.
    Perugini, S., Gonçalves, M.A., Fox, E.A.: Recommender systems research: A connection-centric survey. J. Intell. Inf. Syst. 23(2), 107–143 (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ricci, F., Shapira, B.: Recommender Systems Handbook. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., Hanjalic, A.: CliMF: Learning to maximize reciprocal rank with collaborativeless-is-more filtering. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 139–146. ACM (2012)Google Scholar
  23. 23.
    Vargas, S., Castells, P.: Improving sales diversity by recommending users to items. In: Proceedings of the 8th ACM Conference on Recommender systems, pp. 145–152. ACM (2014)Google Scholar
  24. 24.
    Weimer, M., Karatzoglou, A., Le, Q.V., Smola, A.J.: Cofi rank-maximum margin matrix factorization for collaborative ranking. In: Advances in Neural Information Processing Systems, pp. 1593–1600 (2007)Google Scholar
  25. 25.
    Xie, H.-R., Li, Q., Cai, Y.: Community-aware resource profiling for personalized search in folksonomy. J. Comput. Sci. Technol. 27(3), 599–610 (2012)CrossRefzbMATHGoogle Scholar
  26. 26.
    Xie, H., Yu, L., Li, Q.: A hybrid semantic item model for recipe search by example. In: IEEE International Symposium on Multimedia (ISM), pp. 254–259. IEEE (2010)Google Scholar
  27. 27.
    Zhang, M., Hurley, N.: Avoiding monotony: Improving the diversity of recommendation lists. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 123–130. ACM (2008)Google Scholar
  28. 28.
    Zhao, X., Niu, Z., Chen, W.: Interest before liking: Two-step recommendation approaches. Knowl. Based Syst. 48, 46–56 (2013)CrossRefGoogle Scholar
  29. 29.
    Zhao, X., Niu, Z., Chen, W.: Opinion-based collaborative filtering to solve popularity bias in recommender systems. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part II. LNCS, vol. 8056, pp. 426–433. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Zhao, X., Niu, Z., Chen, W., Shi, C., Niu, K., Liu, D.: A hybrid approach of topic model and matrix factorization based on two-step recommendation framework. J. Intell. Inf. Syst. 44(3), 335–353 (2014)CrossRefGoogle Scholar
  31. 31.
    Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 337–348. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Xiangyu Zhao
    • 1
    • 3
  • Wei Chen
    • 2
    • 4
    Email author
  • Feng Yang
    • 3
    • 5
  • Zhongqiang Liu
    • 1
    • 6
  1. 1.Beijing Research Center for Information Technology in AgricultureBeijingChina
  2. 2.Agricultural Information InstituteChinese Academy of Agricultural SciencesBeijingChina
  3. 3.National Engineering Research Center for Information Technology in AgricultureBeijingChina
  4. 4.Key Laboratory of Agri-information Service TechnologyMinistry of AgricultureBeijingChina
  5. 5.Key Laboratory of Agri-informaticsMinistry of AgricultureBeijingChina
  6. 6.Beijing Engineering Research Center of Agricultural Internet of ThingsBeijingChina

Personalised recommendations