Skip to main content

Real-Time Event Detection with Water Sensor Networks Using a Spatio-Temporal Model

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9645))

Included in the following conference series:

  • 1449 Accesses

Abstract

Event detection with the spatio-temporal correlation is one of the most popular applications of wireless sensor networks. This kind of task trends to be a difficult problem of big data analysis due to the massive data generated from large-scale sensor networks like water sensor networks, especially in the context of real-time analysis. To reduce the computational cost of abnormal event detection and improve the response time, sensor node selection is needed to cut down the amount of data for the spatio-temporal correlation analysis. In this paper, a connected dominated set (CDS) approach is introduced to select backbone nodes from the sensor network. Furthermore, a spatio-temporal model is proposed to achieve the spatio-temporal correlation analysis, where Markov chain is adopted to model the temporal dependency among the different sensor nodes, and Bayesian Network (BN) is used to model the spatial dependency. The proposed approach and model have been applied to the real-time detection of urgent events (e.g. water pollution incidents) with water sensor networks. Preliminary experimental results on simulated data indicate that our solution can achieve better performance in terms of response time and scalability, compared to the simple threshold algorithm and the BN-only algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heidemann, J., Stojanovic, M., Zorzi, M.: Underwater sensor networks: applications, advances and challenges. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 370, 158–175 (2012)

    Article  Google Scholar 

  2. Eliades, D.G., Lambrou, T.P., Panayiotou, C.G., Polycarpou, M.M.: Contamination event detection in water distribution systems using a model-based approach. Procedia Eng. 89, 1089–1096 (2014)

    Article  Google Scholar 

  3. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  4. Karlin, S.: A First Course in Stochastic Processes. Academic Press, Cambridge (2014)

    Google Scholar 

  5. Chandra, A., Tarasia, N., Kumari, A., Swain, A.R.: A distributed connected dominating set using adjustable sensing range. In: Proceedings of 2014 International Conference on Advanced Communication Control and Computing Technologies, pp. 868–871. IEEE Press, New York (2014)

    Google Scholar 

  6. Yim, S., Choi, Y.: Fault-tolerant event detection using two thresholds in wireless sensor networks. In: Proceedings of 15th IEEE Pacific Rim International Symposium on Dependable Computing, pp. 331–335. IEEE Press, New York (2009)

    Google Scholar 

  7. Xue, W., Luo, Q., Wu, H.: Pattern-based event detection in sensor networks. Distrib. Parallel Databases 30(1), 27–62 (2012)

    Article  Google Scholar 

  8. Piao, D., Menon, P.G., Mengshoel, O.J.: Computing probabilistic optical flow using markov random fields. In: Zhang, Y.J., Tavares, J.M.R.S. (eds.) CompIMAGE 2014. LNCS, vol. 8641, pp. 241–247. Springer, Heidelberg (2014)

    Google Scholar 

  9. Wang, X.R., Lizier, J.T., Obst, O., Prokopenko, M., Wang, P.: Spatiotemporal anomaly detection in gas monitoring sensor networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 90–105. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Huang, T., Ma, X., Ji, X., Tang, S.: Online detecting spreading events with the spatio-temporal relationship in water distribution networks. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013, Part I. LNCS, vol. 8346, pp. 145–156. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Mao, Y.-C., Xu, Z., Liang, Y.: An energy efficient connected coverage protocol in wireless sensor networks. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 382–394. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Rossman, L.A.: EPANET2 user’s manual. National Risk Management Research Laboratory: U.S. Environment Protection Agency (2012)

    Google Scholar 

  13. Arad, J., Housh, M., Perelman, L., Ostfeld, A.: A dynamic threshold scheme for contaminanat event detection in water distribution systems. Water Res. 47, 1899–1908 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by the National Key Technology Research and Development Program of China under Grant No. 2013BAB06B04; Key Technology Project of China Huaneng Group under Grant No. HNKJ13-H17-04; Science and Technology Program of Yunnan Province under Grant No. 2014GA007; the Fundamental Research Funds for the Central Universities under Grant No. 2015B22214; NSF-China and Guangdong Province Joint Project: U1301252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchi Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mao, Y., Chen, X., Xu, Z. (2016). Real-Time Event Detection with Water Sensor Networks Using a Spatio-Temporal Model. In: Gao, H., Kim, J., Sakurai, Y. (eds) Database Systems for Advanced Applications. DASFAA 2016. Lecture Notes in Computer Science(), vol 9645. Springer, Cham. https://doi.org/10.1007/978-3-319-32055-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32055-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32054-0

  • Online ISBN: 978-3-319-32055-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics