Skip to main content

Biomedical Polymers: Synthetic Strategies

  • Chapter
  • First Online:
Biomedical Polymers

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1083 Accesses

Abstract

As discussed in Chap. 1, polymeric biomaterials of both natural and synthetic origin constitute an important class of biomedical materials that are used extensively in various applications ranging from drug delivery to tissue engineering. The use of natural polymers such as cellulose and collagen for various medical applications dates back to centuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damodaran, V.B., J. Joslin, and M.M. Reynolds. 2012. Preparing biocompatible materials for non-permanent medical devices. European Pharmaceutical Review 17(5): 71–77.

    Google Scholar 

  2. Middleton, J.C., and A.J. Tipton. 2000. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23): 2335–2346.

    Article  Google Scholar 

  3. Seymour, B.R., and C.E. Carraher. 1992. Polymer chemistry an introduction (3rd Edition). New York: Marcel Dekker, Inc.

    Google Scholar 

  4. Allock, H.R., and F.W. Lampe. 1990. Contemporary polymer chemistry (2nd Edition). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  5. Carothers, W.H. 1929. Studies on polymerization and ring formation. I. An introduction to the general theory of condensation polymers. Journal of the American Chemical Society 51(8): 2548–2559.

    Article  Google Scholar 

  6. Carothers, W.H. 1936. Polymers and polyfunctionality. Transactions of the Faraday Society 32: 39–49.

    Article  Google Scholar 

  7. Wang, Y., et al. 2002. A tough biodegradable elastomer. Nature Biotechnology 20(6): 602–606.

    Article  Google Scholar 

  8. Rai, R., et al. 2012. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science 37(8): 1051–1078.

    Article  Google Scholar 

  9. Yang, J., A.R. Webb, and G.A. Ameer. 2004. Novel citric acid-based biodegradable elastomers for tissue engineering. Advanced Materials 16(6): 511–516.

    Article  Google Scholar 

  10. Yang, J., et al. 2006. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 27(9): 1889–1898.

    Article  Google Scholar 

  11. Barrett, D.G., and M.N. Yousaf. 2008. Poly(triol α-ketoglutarate) as biodegradable, chemoselective, and mechanically tunable elastomers. Macromolecules 41(17): 6347–6352.

    Article  Google Scholar 

  12. Yapor, J.P., et al. 2015. Biodegradable citrate-based polyesters with S-nitrosothiol functional groups for nitric oxide release. Journal of Materials Chemistry B 3(48): 9233–9241.

    Article  Google Scholar 

  13. Kumar, A., et al. 2003. Versatile route to polyol polyesters by lipase catalysis. Macromolecules 36(22): 8219–8221.

    Article  Google Scholar 

  14. Fradet, A., and E. Maréchal. 1982. Kinetics and mechanisms of polyesterifications, in Polymerizations and Polymer Properties, 51–142. Berlin, Heidelberg: Springer.

    Google Scholar 

  15. Finelli, L., et al. 2004. Comparison between titanium tetrabutoxide and a new commercial titanium dioxide based catalyst used for the synthesis of poly(ethylene terephthalate). Journal of Applied Polymer Science 92(3): 1887–1892.

    Article  Google Scholar 

  16. Trotter, J.R., F.B. Joyner, and R.L. McConnell. 1984. Polyester waxes based on 1,12-dodecanedioic acid, US.

    Google Scholar 

  17. Li, J., R.M. Stayshich, and T.Y. Meyer. 2011. Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. Journal of the American Chemical Society 133(18): 6910–6913.

    Article  Google Scholar 

  18. Moore, J.S., and S.I. Stupp. 1990. Room temperature polyesterification. Macromolecules 23(1): 65–70.

    Article  Google Scholar 

  19. Asín, L., et al. 2001. Sequential poly(ester amide)s based on glycine, diols, and dicarboxylic acids: thermal polyesterification versus interfacial polyamidation. Characterization of polymers containing stiff units. Journal of Polymer Science Part A: Polymer Chemistry 39(24): 4283–4293.

    Article  Google Scholar 

  20. Rodriguez-Galan, A., L. Franco, and J. Puiggali. 2010. Degradable poly(ester amide)s for biomedical applications. Polymers 3(1): 65.

    Article  Google Scholar 

  21. Katsarava, R. 2003. Active polycondensation: from pep tide chemistry to amino acid based biodegradable polymers. Macromolecular Symposia 199(1): 419–430.

    Article  Google Scholar 

  22. Sun, H., et al. 2011. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications. Biomacromolecules 12(6): 1937–1955.

    Article  Google Scholar 

  23. Bourke, S.L., and J. Kohn. 2003. Polymers derived from the amino acid l-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Advanced Drug Delivery Reviews 55(4): 447–466.

    Article  Google Scholar 

  24. Fan, Y., M. Kobayashi, and H. Kise. 2000. Synthesis and biodegradability of new polyesteramides containing peptide linkages. Polymer Journal 32(10): 817–822.

    Article  Google Scholar 

  25. Ueda, M., and K. Mizoguchi. 1997. Synthesis of polycarbonate by melt self-polycondensation of 4,4′-isopropylidenedi(p-phenylene)bis(2,2,2-trichloroethyl) carbonate. Polymer 38(13): 3369–3372.

    Article  Google Scholar 

  26. Zhu, W., et al. 2011. High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: synthesis and characterization. Polymer International 60(7): 1060–1067.

    Article  Google Scholar 

  27. Fukuoka, S., et al. 2007. Green and sustainable chemistry in practice: development and industrialization of a novel process for polycarbonate production from CO2 without using phosgene. Polymer Journal 39(2): 91–114.

    Article  Google Scholar 

  28. Cotarca, L., and H. Eckert. 2004. Phosgenations—A Handbbok. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  29. King, J.A.J. 2000. Synthesis of polycarbonates. In Handbook of polycarbonate science and technology, ed. D.G. Legrand and J.T. Bendler. NY: Marcel Dekker.

    Google Scholar 

  30. Sommerfeld, S.D., et al. 2014. Enzymatic surface erosion of high tensile strength polycarbonates based on natural phenols. Biomacromolecules 15(3): 830–836.

    Article  Google Scholar 

  31. Pulapura, S., and J. Kohn. 1992. Tyrosine-derived polycarbonates: backbone-modified “pseudo”-poly(amino acids) designed for biomedical applications. Biopolymers 32(4): 411–417.

    Article  Google Scholar 

  32. Lo, M.-C., et al. 2015. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion. Biomedical Microdevices 17(2): 1–11.

    Article  Google Scholar 

  33. Lewitus, D., et al. 2011. Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomaterialia 7(6): 2483–2491.

    Article  Google Scholar 

  34. Abramson, S., et al., 2002. Characterization of degradable polymers for orthopedic application. In Polymer based systems on tissue engineering, replacement and regeneration, ed. R. Reis and D. Cohn, 125–138. Netherlands: Springer.

    Google Scholar 

  35. Burke, A., and N. Hasirci. 2004. Polyurethanes in biomedical applications. In Biomaterials, ed. N. Hasirci and V. Hasirci, 83–101. USA: Springer.

    Google Scholar 

  36. Szycher, M. 2012. Szycher’s handbook of polyurethanes, second edition. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  37. Gabriel, L.P., et al. 2014. Isocyanates as precursors to biomedical polyurethanes. Chemical Engineering Transactions 38: 253–258.

    Google Scholar 

  38. Yang, J., et al. 2014. Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs. Frontiers of Chemical Science and Engineering 8(4): 498–510.

    Article  Google Scholar 

  39. Sarkar, D., et al. 2009. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications. Journal of Biomedical Materials Research, Part A 90A(1): 263–271.

    Article  Google Scholar 

  40. Zahn, V.H., and M. Dominik. 1961. Lineare oligomere aus hexamethylendiisocyanat und butandiol-(1,4). Die Makromolekulare Chemie 44(1): 290–311.

    Article  Google Scholar 

  41. Morgan, P.W., and S.L. Kwolek. 1964. Low temperature solution polycondensation of piperazine polyamides. Journal of Polymer Science Part A: General Papers 2(1): 181–208.

    Google Scholar 

  42. Figovsky, O., L. Shapovalov, and F. Buslov. 2005. Ultraviolet and thermostable non-isocyanate polyurethane coatings. Surface Coatings International Part B: Coatings Transactions 88(1): 67–71.

    Article  Google Scholar 

  43. Calle, M., et al. 2014. An efficient nonisocyanate route to polyurethanes via thiol-ene self-addition. Journal of Polymer Science Part A: Polymer Chemistry 52(21): 3017–3025.

    Article  Google Scholar 

  44. Baskaran, D., and A.H.E. 2010. Müller, Anionic vinyl polymerization. In Controlled and living polymerizations, 1–56. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  45. Lecomte, P., and C. Jérôme. 2012. Recent developments in ring-opening polymerization of lactones. In Synthetic biodegradable polymers, ed. B. Rieger, et al., 173–217. Berlin, Heidelberg: Springer.

    Google Scholar 

  46. Hashimoto, K. 2000. Ring-opening polymerization of lactams. Living anionic polymerization and its applications. Progress in Polymer Science 25(10): 1411–1462.

    Article  Google Scholar 

  47. Dane, E.L., and M.W. Grinstaff. 2012. Poly-amido-saccharides: synthesis via anionic polymerization of a β-lactam sugar monomer. Journal of the American Chemical Society 134(39): 16255–16264.

    Article  Google Scholar 

  48. Zhang, J., et al. 2009. Access to poly-β-peptides with functionalized side chains and end groups via controlled ring-opening polymerization of β-lactams. Journal of the American Chemical Society 131(4): 1589–1597.

    Article  Google Scholar 

  49. Grubbs, R.B. 2005. Multiblock copolymers: PEO stuck in the middle. Macromolecular Chemistry and Physics 206(6): 625–627.

    Article  Google Scholar 

  50. Mahajan, S., et al. 2004. Synthesis of amphiphilic ABC triblock copolymers with PEO as the middle block. Macromolecular Rapid Communications 25(22): 1889–1894.

    Article  Google Scholar 

  51. Goethals, E.J., et al. 1994. Tailored polymers by cationic ring-opening polymerization. Die Angewandte Makromolekulare Chemie 223(1): 1–11.

    Article  Google Scholar 

  52. Aoshima, S., and S. Kanaoka. 2009. A renaissance in living cationic polymerization. Chemical Reviews 109(11): 5245–5287.

    Article  Google Scholar 

  53. Adams, N., and U.S. Schubert. 2007. Poly(2-oxazolines) in biological and biomedical application contexts. Advanced Drug Delivery Reviews 59(15): 1504–1520.

    Article  Google Scholar 

  54. Lava, K., B. Verbraeken, and R. Hoogenboom. 2015. Poly(2-oxazoline)s and click chemistry: a versatile toolbox toward multi-functional polymers. European Polymer Journal 65: 98–111.

    Article  Google Scholar 

  55. Goethals, E.J., and F. Du Prez. 2007. Carbocationic polymerizations. Progress in Polymer Science 32(2): 220–246.

    Article  Google Scholar 

  56. Tomlinson, R., et al. 2002. Pendent chain functionalized polyacetals that display pH-dependent degradation: a platform for the development of novel polymer therapeutics. Macromolecules 35(2): 473–480.

    Article  Google Scholar 

  57. England, R.M., et al. 2012. Polyacetal-stilbene conjugates—the first examples of polymer therapeutics for the inhibition of HIF-1 in the treatment of solid tumours. Journal of Controlled Release 164(3): 314–322.

    Article  Google Scholar 

  58. Garripelli, V.K., et al. 2010. A novel thermosensitive polymer with pH-dependent degradation for drug delivery. Acta Biomaterialia 6(2): 477–485.

    Article  Google Scholar 

  59. Aoshima, S., and T. Higashimura. 1984. Vinyl ether oligomers with conjugated-polyene and acetal terminals: a new chain-transfer mechanism for cationic polymerization of vinyl ethers. Polymer Journal 16(3): 249–258.

    Article  Google Scholar 

  60. Dougherty, J.A., and F.J. Vara. 1993. Cationic polymerization of vinyl ethers without color formation (WO1993002119 A1).

    Google Scholar 

  61. Mecerreyes, D., R. Jérôme, and P. Dubois. 1999. Novel macromolecular architectures based on aliphatic polyesters: relevance of the “coordination-insertion” ring-opening polymerization. In Macromolecular architectures, ed. J. Hilborn, et al., 1–59, Berlin, Heidelberg: Springer.

    Google Scholar 

  62. Duda, A., and S. Penczek. 1995. On the difference of reactivities of various aggregated forms of aluminium triisopropoxide in initiating ring-opening polymerizations. Macromolecular Rapid Communications 16(1): 67–76.

    Article  Google Scholar 

  63. Kowalski, A., A. Duda, and S. Penczek. 2000. Mechanism of cyclic ester polymerization initiated with Tin(II) Octoate. 2. Macromolecules fitted with Tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33(3): 689–695.

    Article  Google Scholar 

  64. Ricca, A., and J.C.W. Bauschlicher. 1994. Journal of Physical Chemistry 98: 12899.

    Article  Google Scholar 

  65. Kricheldorf, H.R., I. Kreiser-Saunders, and A. Stricker. 2000. Polylactones 48. SnOct2-initiated polymerizations of lactide: a mechanistic study. Macromolecules 33(3): 702–709.

    Article  Google Scholar 

  66. Albertsson, A.-C., and I.K. Varma. 2003. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4(6): 1466–1486.

    Article  Google Scholar 

  67. Zhang, X., et al. 1994. Mechanism of lactide polymerization in the presence of stannous octoate: the effect of hydroxy and carboxylic acid substances. Journal of Polymer Science Part A: Polymer Chemistry 32(15): 2965–2970.

    Article  Google Scholar 

  68. Damodaran, V.B., et al. 2012. S-Nitrosated biodegradable polymers for biomedical applications: synthesis, characterization and impact of thiol structure on the physicochemical properties. Journal of Materials Chemistry 22(13): 5990–6001.

    Article  Google Scholar 

  69. Damodaran, V.B., and M.M. Reynolds. 2011. Biodegradable S-nitrosothiol tethered multiblock polymer for nitric oxide delivery. Journal of Materials Chemistry 21(16): 5870–5872.

    Article  Google Scholar 

  70. Zhao, Z., et al. 2003. Polyphosphoesters in drug and gene delivery. Advanced Drug Delivery Reviews 55(4): 483–499.

    Article  Google Scholar 

  71. Xiao, C.-S., et al. 2006. Kinetics and mechanism of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane polymerization initiated by stannous octoate. Macromolecules 39(20): 6825–6831.

    Article  Google Scholar 

  72. Matyjaszewski, K., and J. Spanswick. 2005. Controlled/living radical polymerization. Materials Today 8(3): 26–33.

    Article  Google Scholar 

  73. Braunecker, W.A., and K. Matyjaszewski. 2007. Controlled/living radical polymerization: features, developments, and perspectives. Progress in Polymer Science 32(1): 93–146.

    Article  Google Scholar 

  74. Qiu, J., B. Charleux, and K. Matyjaszewski. 2001. Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Progress in Polymer Science 26(10): 2083–2134.

    Article  Google Scholar 

  75. Xia, J., et al. 1999. Atom transfer radical polymerization in supercritical carbon dioxide. Macromolecules 32(15): 4802–4805.

    Article  Google Scholar 

  76. Carmichael, A.J., et al. 2000. Copper() mediated living radical polymerisation in an ionic liquid. Chemical Communications 14: 1237–1238.

    Article  Google Scholar 

  77. Pyun, J., and K. Matyjaszewski. 2001. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization. Chemistry of Materials 13(10): 3436–3448.

    Article  Google Scholar 

  78. Siegwart, D.J., J.K. Oh, and K. Matyjaszewski. 2012. ATRP in the design of functional materials for biomedical applications. Progress in Polymer Science 37(1): 18–37.

    Article  Google Scholar 

  79. Matyjaszewski, K. 2014. From cationic ring-opening polymerization to atom transfer radical polymerization. Polimery 59(1): 24–37.

    Article  Google Scholar 

  80. Matyjaszewski, K., and J. Xia. 2001. Atom transfer radical polymerization. Chemical Reviews 101(9): 2921–2990.

    Article  Google Scholar 

  81. Mei, Y., et al. 2004. Solid-phase ATRP synthesis of peptide—polymer hybrids. Journal of the American Chemical Society 126(11): 3472–3476.

    Article  Google Scholar 

  82. Bontempo, D., and H.D. Maynard. 2005. Streptavidin as a macroinitiator for polymerization: in situ protein—polymer conjugate formation. Journal of the American Chemical Society 127(18): 6508–6509.

    Article  Google Scholar 

  83. Lele, B.S., et al. 2005. Synthesis of uniform protein—polymer conjugates. Biomacromolecules 6(6): 3380–3387.

    Article  Google Scholar 

  84. Gao, W., et al. 2009. In situ growth of a stoichiometric PEG-like conjugate at a protein’s N-terminus with significantly improved pharmacokinetics. Proceedings of the National Academy of Sciences 106(36): 15231–15236.

    Article  Google Scholar 

  85. Peeler, J.C., et al. 2010. Genetically encoded initiator for polymer growth from proteins. Journal of the American Chemical Society 132(39): 13575–13577.

    Article  Google Scholar 

  86. Mühlebach, A., S.G. Gaynor, and K. Matyjaszewski. 1998. Synthesis of amphiphilic block copolymers by atom transfer radical polymerization (ATRP). Macromolecules 31(18): 6046–6052.

    Article  Google Scholar 

  87. Hua, M., et al. 2005. Successful ATRP syntheses of amphiphilic block copolymers poly(styrene-block-N, N-dimethylacrylamide) and their self-assembly. Polymer Journal 37(2): 59–64.

    Article  Google Scholar 

  88. Sun, H., et al., 2015. Synthesis of well-defined amphiphilic block copolymers via AGET ATRP used for hydrophilic modification of PVDF membrane. Journal of Applied Polymer Science. 132(24): n/a-n/a.

    Google Scholar 

  89. Xu, F.-J., et al. 2008. Pentablock copolymers of poly(ethylene glycol), poly((2-dimethyl amino)ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery. Biomaterials 29(20): 3023–3033.

    Article  Google Scholar 

  90. Fristrup, C.J., K. Jankova, and S. Hvilsted. 2009. Surface-initiated atom transfer radical polymerization-a technique to develop biofunctional coatings. Soft Matter 5(23): 4623–4634.

    Article  Google Scholar 

  91. Singh, N., et al. 2008. Surface-initiated atom transfer radical polymerization: a new method for preparation of polymeric membrane adsorbers. Journal of Membrane Science 309(1–2): 64–72.

    Article  Google Scholar 

  92. Ma, H., et al. 2006. Surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methyl methacrylate from a mixed self-assembled monolayer on gold. Advanced Functional Materials 16(5): 640–648.

    Article  Google Scholar 

  93. Li, C.Y., F.J. Xu, and W.T. Yang. 2013. Simple strategy to functionalize polymeric substrates via surface-initiated ATRP for biomedical applications. Langmuir 29(5): 1541–1550.

    Article  Google Scholar 

  94. Moad, G., E. Rizzardo, and S.H. Thang. 2013. Fundamentals of RAFT Polymerization, in Fundamentals of Controlled/Living Radical Polymerization., The Royal Society of Chemistry. p. 205–249.

    Google Scholar 

  95. Schilli, C., M.G. Lanzendörfer, and A.H.E. Müller. 2002. Benzyl and cumyl dithiocarbamates as chain transfer agents in the raft polymerization of N-isopropylacrylamide. In situ FT-NIR and MALDI—TOF MS investigation. Macromolecules 35(18): 6819–6827.

    Article  Google Scholar 

  96. Keddie, D.J., et al. 2012. Chain transfer kinetics of acid/base switchable N-aryl-N-pyridyl dithiocarbamate RAFT agents in methyl acrylate. N-Vinylcarbazole and Vinyl Acetate Polymerization. Macromolecules 45(10): 4205–4215.

    Google Scholar 

  97. Thomas, D.B., et al. 2004. Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations. Macromolecules 37(5): 1735–1741.

    Article  Google Scholar 

  98. Li, C., and B.C. Benicewicz. 2005. α-Cyanobenzyl dithioester reversible addition–fragmentation chain-transfer agents for controlled radical polymerizations. Journal of Polymer Science Part A: Polymer Chemistry 43(7): 1535–1543.

    Article  Google Scholar 

  99. Kang, H.U., et al. 2013. One-step synthesis of block copolymers using a hydroxyl-functionalized trithiocarbonate RAFT agent as a dual initiator for RAFT polymerization and ROP. Journal of Polymer Science Part A: Polymer Chemistry 51(4): 774–779.

    Article  Google Scholar 

  100. Mayadunne, R.T.A., et al. 2000. Living polymers by the use of trithiocarbonates as reversible addition—fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules 33(2): 243–245.

    Article  Google Scholar 

  101. Bernard, J., et al. 2008. Preparation of a xanthate-terminated dextran by click chemistry: application to the synthesis of polysaccharide-coated nanoparticles via surfactant-free ab initio emulsion polymerization of vinyl acetate. Journal of Polymer Science Part A: Polymer Chemistry 46(8): 2845–2857.

    Article  Google Scholar 

  102. Destarac, M., et al. 2002. Xanthates as chain-transfer agents in controlled radical polymerization (MADIX): structural effect of the O-alkyl group. Macromolecular Rapid Communications 23(17): 1049–1054.

    Article  Google Scholar 

  103. Du, Y., et al. 2012. pH-sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials 33(29): 7291–7299.

    Article  Google Scholar 

  104. Zheng, X., et al. 2015. Antifouling property of monothiol-terminated bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymer on gold surfaces. Journal of Materials Chemistry B 3(9): 1921–1930.

    Article  Google Scholar 

  105. Zhan, X., et al., 2014. Preparation, surface wetting properties, and protein adsorption resistance of well-defined amphiphilic fluorinated diblock copolymers. Journal of Applied Polymer Science 131(23): n/a-n/a.

    Google Scholar 

  106. Huang, Z., et al. 2015. Synthesis of amphiphilic fluorescent PEGylated AIE nanoparticles via RAFT polymerization and their cell imaging applications. RSC Advances 5(109): 89472–89477.

    Article  Google Scholar 

  107. Tang, M., et al. 2015. Influence of 2-(diisopropylamino)ethyl methacrylate on acid-triggered hydrolysis of cyclic benzylidene acetals and their importance in efficient drug delivery. Polymer Chemistry 6(37): 6671–6679.

    Article  Google Scholar 

  108. Kuo, C.-Y., et al., Thermo- and pH-induced self-assembly of P(AA-b-NIPAAm-b-AA) triblock copolymers synthesized via RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2015: n/a-n/a.

    Google Scholar 

  109. Keen, I., et al. 2010. Degradable hydrogels for tissue engineering—Part II: responses of fibroblasts and macrophages to linear PHEMA. Journal of Biomimetics, Biomaterials and Tissue Engineering 8: 89–102.

    Article  Google Scholar 

  110. Quemener, D., et al. 2006. RAFT and click chemistry: a versatile approach to well-defined block copolymers. Chemical Communications 48: 5051–5053.

    Article  Google Scholar 

  111. Li, M., et al. 2008. Responsive polymer-protein bioconjugates prepared by RAFT polymerization and copper-catalyzed azide-alkyne click chemistry. Macromolecular Rapid Communications 29(12–13): 1172–1176.

    Article  Google Scholar 

  112. Nicolas, J., et al. 2013. Nitroxide-mediated polymerization. Progress in Polymer Science 38(1): 63–235.

    Article  Google Scholar 

  113. Chenal, M., et al. 2011. First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization. Polymer Chemistry 2(7): 1523–1530.

    Article  Google Scholar 

  114. Harrisson, S., et al. 2013. Nanoparticles with in vivo anticancer activity from polymer prodrug amphiphiles prepared by living radical polymerization. Angewandte Chemie International Edition 52(6): 1678–1682.

    Article  Google Scholar 

  115. Karatzas, A., et al. 2009. Synthesis of well-defined functional macromolecular chimeras based on poly(ethylene oxide) or poly(N-vinyl pyrrolidone). Reactive and Functional Polymers 69(7): 435–440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod B. Damodaran .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Damodaran, V.B., Bhatnagar, D., Murthy, N.S. (2016). Biomedical Polymers: Synthetic Strategies. In: Biomedical Polymers. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32053-3_2

Download citation

Publish with us

Policies and ethics