Skip to main content

Vertically-Aligned Carbon Nanotubes for Electrochemical Energy Conversion and Storage

  • Chapter
  • First Online:
Nanomaterials for Sustainable Energy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Vertically-aligned carbon nanotubes (VA-CNTs) have a large surface area, high electronic conductivity and electrochemical accessibility, and mechanical/chemical/electrochemical stability. These unique properties make VA-CNTs promising electrode materials for energy conversion and storage devices, including fuel cells, lithium batteries, and supercapacitors. This chapter provides an overview on recent development of VA-CNT electrodes with and without heteroatom-doping for efficient energy conversion and storage by summarizing our work on the discovery of nitrogen-doped VA-CNTs as a highly active cathode for ORR in fuel cells, vertically aligned nitrogen doped coral-like carbon fiber arrays (VA-NCCFs) as a high-performance air cathode in Li-air batteries, as well as VA-CNTs and their 3D derivatives as porous electrodes in high-performance Li-ion batteries and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.B. Botkin, Powering the Future: A Scientist’s Guide to Energy Independence (FT Press, 2010)

    Google Scholar 

  2. B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001)

    Article  Google Scholar 

  3. S. Basu (ed.), Recent Trends in Fuel Cell Science and Technology (Springer, 2007)

    Google Scholar 

  4. A.J. Appleby, Electrocatalysis of aqueous dioxygen reduction. J. Electroanal. Chem. 357, 117–179 (1993)

    Article  Google Scholar 

  5. K. Kordesch, J. Gsellmann, M. Cifrain, S. Voss, V. Hacker, R.R. Aronson, C. Fabjan, T. Hejze, J. Daniel-Ivad, Intermittent use of a low-cost alkaline fuel cell-hybrid system for electric vehicles. J. Power Sources 80, 190–197 (1999)

    Google Scholar 

  6. X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. J. Power Sources 172, 145–154 (2007)

    Article  Google Scholar 

  7. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004)

    Article  Google Scholar 

  8. K. Gong, P. Yu, L. Su, S. Xiong, L. Mao, Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J. Phys. Chem. C 111, 1882–1887 (2007)

    Article  Google Scholar 

  9. G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotube membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998)

    Article  Google Scholar 

  10. J. Yang, D-J. Liu, N.N. Kariuki, L.X. Chen, Aligned carbon nanotubes with built-in FeN4 active sites for electrocatalytic reduction of oxygen. Chem. Comm. 329–331 (2008)

    Google Scholar 

  11. B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, D.R. MacFarlane, High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science 321, 671–674 (2008)

    Article  Google Scholar 

  12. J.P. Collman, N.K. Devaraj, R.A. Decréau, Y. Yang, Y.-L. Yan, W. Ebina, T.A. Eberspacher, C.E.D. Chidsey, A cytochrome C oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315, 1565–1568 (2007)

    Article  Google Scholar 

  13. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)

    Article  Google Scholar 

  14. L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823–4892 (2015)

    Article  Google Scholar 

  15. M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Recent development of carbon materials for Li ion batteries. Carbon 38, 183–197 (2000)

    Article  Google Scholar 

  16. W. Lu, A. Goering, L. Qu, L. Dai, Lithium-ion batteries based on vertically-aligned carbon nanotube electrodes and ionic liquid electrolytes. Phys. Chem. Chem. Phys. 14, 12099–12104 (2012)

    Article  Google Scholar 

  17. T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16, 272–280 (2013)

    Article  Google Scholar 

  18. E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 2421–2425 (2000)

    Article  Google Scholar 

  19. W-C. Fang, Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors. J. Phys. Chem. C 112, 11552–11555 (2008)

    Google Scholar 

  20. H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater. 11, 1281–1285 (1999)

    Article  Google Scholar 

  21. J. van de Lagemaat, T.M. Barnes, G. Rumbles, S.E. Shaheen, T.J. Coutts, C. Weeks, I. Levitsky, J. Peltola, P. Glatkowski, Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett. 88, 233503–1–3 (2006)

    Google Scholar 

  22. L. Dai, D.W. Chang, J.-B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)

    Article  Google Scholar 

  23. L. Dai, Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications (Elsevier Science, Boston, 2006)

    Google Scholar 

  24. S. Iijima, Helical microtubules of graphite carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  25. M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett. 365, 69–74 (2002)

    Article  Google Scholar 

  26. C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997)

    Article  Google Scholar 

  27. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)

    Article  Google Scholar 

  28. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A Struct. 334, 173–178 (2002)

    Article  Google Scholar 

  29. E.T. Thostenson, C. Li, T.-W. Chou, Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)

    Article  Google Scholar 

  30. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)

    Article  Google Scholar 

  31. H. Dai, Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002)

    Article  Google Scholar 

  32. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)

    Article  Google Scholar 

  33. X. Lv, F. Du, Y. Ma, Q. Wu, Y. Chen, Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds. Carbon 43, 2013–2032 (2005)

    Article  Google Scholar 

  34. S. Huang, L. Dai, A. Mau, Patterned growth and contact transfer of well-aligned carbon nanotube films. J. Phys. Chem. B 103, 4223–4227 (1999)

    Article  Google Scholar 

  35. Y. Ma, B. Wang, Y. Wu, Y. Huang, Y. Chen, The production of horizontally aligned single-walled carbon nanotubes. Carbon 49, 4098–4110 (2011)

    Article  Google Scholar 

  36. D. Yuan, L. Ding, H. Chu, Y. Feng, T.P. McNicholas, J. Liu, Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 8, 2576–2579 (2008)

    Article  Google Scholar 

  37. H. Chen, A. Roy, J.-B. Baek, L. Zhu, J. Qu, L. Dai, Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater. Sci. Eng. Rep. 70, 63–91 (2010)

    Article  Google Scholar 

  38. J. Li, C. Papadopoulos, J. Xu, Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75, 367–369 (1999)

    Article  Google Scholar 

  39. C. Rao, R. Sen, B. Satishkumar, A. Govindaraj, Large aligned-nanotube bundles from ferrocene pyrolysis. Chem. Comm. 1525–1526 (1998)

    Google Scholar 

  40. B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Microfabrication technology: organized assembly of carbon nanotubes. Nature 416, 495–496 (2002)

    Article  Google Scholar 

  41. P.J.F. Harris, Carbon Nanotubes and Related Structures—New Materials for the Twenty-First Century (Cambridge University Express, Cambridge, 2001)

    Google Scholar 

  42. D.T. Welna, L. Qu, B.E. Taylor, L. Dai, M.F. Durstock, Vertically aligned carbon nanotube electrodes for lithium-ion batteries. J. Power Sources 196, 1455–1460 (2011)

    Article  Google Scholar 

  43. J. Shui, F. Du, C. Xue, Q. Li, L. Dai, Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li–O2 batteries. ACS Nano 8, 3015–3022 (2014)

    Article  Google Scholar 

  44. W. Lu, L. Qu, K. Henry, L. Dai, High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J. Power Sources 189, 1270–1277 (2009)

    Article  Google Scholar 

  45. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy, Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23, 4810–4816 (2011)

    Article  Google Scholar 

  46. K. Gong, P. Yu, L. Su, S. Xiong, L. Mao, Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J. Phys. Chem. C 111, 1882–1887 (2007)

    Article  Google Scholar 

  47. Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39, 2184–2202 (2010)

    Article  Google Scholar 

  48. D. Zhao, G. Yin, J. Wei, Non-platinum cathode electrocatalysts in polymer electrolyte membrane fuel cells. Prog. Chem. 21, 2753–2759 (2009)

    Google Scholar 

  49. L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Li, D. Zhu, Aligned nanotubes. ChemPhysChem 4, 1150–1169 (2003)

    Article  Google Scholar 

  50. L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano 1, 494–500 (2007)

    Article  Google Scholar 

  51. S. Maldonado, K.J. Stevenson, Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 109, 4707–4716 (2005)

    Article  Google Scholar 

  52. Z. Shi, J. Zhang, Z.-S. Liu, H. Wang, D.P. Wilkinson, Current status of Ab Initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts. Electrochim. Acta 51, 1905–1916 (2006)

    Article  Google Scholar 

  53. W. Xiong, F. Du, Y. Liu, A. Perez, M. Supp, T.S. Ramakrishnan, L. Dai, L. Jiang, 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132, 15839–15841 (2010)

    Article  Google Scholar 

  54. J. Shui, M. Wang, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 1, e1400129 (2015)

    Article  Google Scholar 

  55. S. Wang, E. Iyyamperumal, A. Roy, Y. Xue, D. Yu, L. Dai, Vertically aligned BCN nanotubes as efficient metal-free electrocatalyst for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 50, 11756–11760 (2011)

    Article  Google Scholar 

  56. D. Yu, Y. Xue, L. Dai, Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3, 2863–2870 (2012)

    Article  Google Scholar 

  57. E. Frackowiak, F. Béguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbon. Carbon 40, 1775–1787 (2002)

    Article  Google Scholar 

  58. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    Article  Google Scholar 

  59. D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006)

    Google Scholar 

  60. Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 10, A106–A110 (2007)

    Article  Google Scholar 

  61. H. Zhang, G. Cao, Y. Yang, Z. Gu, Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. Electrochem. Soc. 155, K19–K22 (2008)

    Article  Google Scholar 

  62. J. Zhao, Q.Y. Gao, C. Gu, Y. Yang, Preparation of multi-walled carbon nanotube array electrodes and its electrochemical intercalation behavior of Li ions. Chem. Phys. Lett. 358, 77–82 (2002)

    Article  Google Scholar 

  63. J. Chen, Y. Liu, A.I. Minett, C. Lynam, J. Wang, G. Wallace, Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem. Mater. 19, 3595–3597 (2007)

    Article  Google Scholar 

  64. V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. 104, 13574–13577 (2007)

    Article  Google Scholar 

  65. C. Masarapu, S. Subramanian, H. Zhu, B. Wei, Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv. Funct. Mater. 19, 1008–1014 (2009)

    Article  Google Scholar 

  66. B. Cao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 307, 153–157 (1999)

    Article  Google Scholar 

  67. J. Dahn, T. Zheng, Y. Liu, J. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995)

    Article  Google Scholar 

  68. Z.-H. Yang, H.-Q. Wu, Electrochemical intercalation of lithium into raw carbon nanotubes. Mater. Chem. Phys. 71, 7–11 (2001)

    Article  Google Scholar 

  69. G.X. Wang, J. Yao, H.K. Liu, S.X. Dou, J.H. Ahn, Growth and lithium storage properties of vertically aligned carbon nanotubes. Met. Mater. Int. 12, 413–416 (2006)

    Article  Google Scholar 

  70. M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 14, 1610–1613 (2002)

    Article  Google Scholar 

  71. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664–2668 (2008)

    Article  Google Scholar 

  72. W-C. Fang, Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors. J. Phys. Chem. C 112, 11552–11555 (2008)

    Google Scholar 

  73. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes–the route toward applications. Science 297, 787–792 (2002)

    Article  Google Scholar 

  74. L. Dai, A.W.H. Mau, Controlled synthesis and modification of carbon nanotubes and C-60: carbon nanostructures for advanced polymer composite materials. Adv. Mater. 13, 899–913 (2001)

    Article  Google Scholar 

  75. S. Huang, L. Dai, Plasam etching for purification and controlled opening of aligned carbon nanotubes. J. Phys. Chem. B. 106, 3543–3545 (2002)

    Article  Google Scholar 

  76. S. Chen, J. Zhu, Q. Han, Z. Zheng, Y. Yang, X. Wang, Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst. Growth Des. 9, 4356–4261 (2009)

    Article  Google Scholar 

  77. Q. Wang, Z.H. Wen, J.H. Li, A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater. 16, 2141–2146 (2006)

    Article  Google Scholar 

  78. J.H. Jang, A. Kato, K. Machida, K. Naoi, Supercapacitor performance of hydrous ruthenium oxide electrodes prepared by electrophoretic deposition. J. Electrochem. Soc. 153, A321–A328 (2006)

    Article  Google Scholar 

  79. J.-S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.-D. Zhang, F.-S. Sheu, Preparation and characterization of well-aligned carbon nanotubes-ruthenium oxide nano composites for supercapacitors. Small 1, 560–565 (2005)

    Article  Google Scholar 

  80. W.-C. Fang, O. Chyan, C.-L. Sun, C.-T. Wu, C.-P. Chen, K.-H. Chen, L.-C. Chen, J.-H. Huang, Arrayed CNxNT-RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor application. Electrochem. Comm. 9, 239–244 (2007)

    Article  Google Scholar 

  81. C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 19, 5772–5777 (2009)

    Article  Google Scholar 

  82. N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim. Acta 51, 3039–3045 (2006)

    Article  Google Scholar 

  83. U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application. J. Power Sources 188, 338–342 (2009)

    Article  Google Scholar 

  84. J.-W. Lang, L.-B. Kong, W.-J. Wu, M. Liu, Y.-C. Luo, L. Kang, A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J. Solid State Electrochem. 13, 333–340 (2009)

    Article  Google Scholar 

  85. H. Zhang, G. Cao, W. Wang, K. Yuan, B. Xu, W. Zhang, J. Cheng, Y. Yang, Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochim. Acta 54, 1153–1159 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank our colleagues for their contributions to the work cited. We are also grateful for financial support from AFRL/DAGSI, AFOSR, and NSF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Dai or Levi Elston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Du, F., Dai, Q., Dai, L., Zhang, Q., Reitz, T., Elston, L. (2016). Vertically-Aligned Carbon Nanotubes for Electrochemical Energy Conversion and Storage. In: Li, Q. (eds) Nanomaterials for Sustainable Energy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32023-6_7

Download citation

Publish with us

Policies and ethics