Skip to main content

Discotic Liquid Crystals for Self-organizing Photovoltaics

  • Chapter
  • First Online:
Nanomaterials for Sustainable Energy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Development of photovoltaic solar cell s using organic materials as active components is an emerging area of contemporary research endeavor toward sustainable energy harvesting. Among the organic optoelectronic material s, disc-shaped polycyclic aromatic compounds capable of exhibiting columnar liquid crystal (LC) properties are unique. Liquid crystalline materials simultaneously display the anisotropic properties of crystalline solids and flow properties of isotropic liquids. The order and dynamics of the molecules of liquid crystalline materials make them stimuli responsive smart soft materials. LCs are ubiquitous in our daily life as the active switching materials in flat panel display such as the screens of laptops, computers, cameras and mobile phones. Interestingly, the nematic LC phase of disc-like molecules has been used to fabricate optical compensation films which enable enlarging the viewing angle of LC display devices. However the columnar LC phase of disc-like compounds has been found to possess remarkable semiconducting properties. Like other LCs, they show promising characteristics such as controllable alignment and self-healing of structural defect s which render them appealing candidates for use in organic semiconducting devices. In this chapter, we present the state-of-the-art of organic photovoltaics employing discotic LC s as active components as well as facilitating additives in the active layer of photovoltaic devices. Various discotic cores such as phthalocyanine, porphyrin, hexabenzocoronene, triphenylene, perylene diimide and others with different electronic properties have been used in organic photovoltaic s. The discotic LCs act as electron and/or hole transporting materials in the active layer, which have been tested both in bilayer and bulk heterojunction device configurations. Though this research enterprise is in early stage, with adequate attention these fascinating self-organizing material s could contribute toward the sustainable energy harvesting from solar radiation in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Gunes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)

    Article  Google Scholar 

  2. M. Gratzel, Dye-sensitized solar cells. J. Photochem. Photobio. C: Photochem. Rev. 4, 145–153 (2003)

    Article  Google Scholar 

  3. P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)

    Article  Google Scholar 

  4. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction pervoskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    Article  Google Scholar 

  5. F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Enrgy Mater. Sol. Cells 93, 394–412 (2009)

    Article  Google Scholar 

  6. C. Liu, K. Wang, X. Gong, A.J. Heeger, Low bandgap semiconducting polymers for polymeric photovoltaics. Chem. Soc. Rev. (2015)

    Google Scholar 

  7. Y. Sun, G.C. Welch, W.L. Leong, C.J. Takacs, G.C. Bazan, A.J. Heeger, Solution-processed small-molecule solar cells with 6.7 % efficiency. Nat. Mater. 11, 44–48 (2012)

    Article  Google Scholar 

  8. P. Kumar, S. Chand, Recent progress and future aspects of organic solar cells. Prog. Photovolt: Res. Appl. 20, 377–415 (2012)

    Article  Google Scholar 

  9. G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photon. 6, 153–161 (2012)

    Article  MathSciNet  Google Scholar 

  10. Y. Liu, C.-C. Chen, Z. Hong, J. Gao, Y. Yang, H. Zhou, L. Dou, G. Li, Y. Yang, Solution-processed small-molecule solar cells: breaking the 10 % power conversion efficiency. Sci. Report 3, 3356 (2013)

    Google Scholar 

  11. Y.-W. Su, S.-C. Lan, K.-H. Wei, Organic photovoltaics. Mater. Today 15, 554–562 (2012)

    Article  Google Scholar 

  12. J.W. Rumer, I. McCulloch, Organic photovoltaics: crosslinking for optimal morphology and stability. Mater. Today 18, 425–435 (2015)

    Article  Google Scholar 

  13. R.A. Street, Electronic structure and properties of organic bulk-heterojunction interfaces. Adv. Mater. (2015). doi: 10.1002/adma.201503162

    Google Scholar 

  14. C.B. Nielsen, S. Holliday, H.-Y. Chen, S.J. Cryer, I. McCulloch, Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015)

    Article  Google Scholar 

  15. Y. Lin, X. Zhan, Oligomer molecules for efficient organic photovoltaics. Acc. Chem. Res. (2015)

    Google Scholar 

  16. B. Walker, A.B. Tamayo, X.-D. Dang, P. Zalar, J.H. Seo, A. Garcia, M. Tantiwiwat, T.-Q. Nguyen, Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv. Funct. Mater. 19, 3063–3069 (2009)

    Article  Google Scholar 

  17. B. Walker, C. Kim, T.-Q. Nguyen, Small molecule solution-processed bulk heterojunction solar cells. Chem. Mater. 23, 470–482 (2011)

    Article  Google Scholar 

  18. J. Roncali, Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc. Chem. Res. 42, 1719–1730 (2009)

    Article  Google Scholar 

  19. J. Roncali, P. Leriche, P. Blanchard, Molecular materials for organic photovoltaics: small is beautiful. Adv. Mater. 26, 3821–3838 (2014)

    Article  Google Scholar 

  20. M.T. Lloyd, J.E. Anthony, G.G. Malliaras, Photovoltaics from soluble small molecules. Mater. Today 10, 34–41 (2007)

    Article  Google Scholar 

  21. Q. Li (ed.), Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (Wiley, New Jersey, 2012)

    Google Scholar 

  22. Q. Li (ed.), Self-organized Organic Semiconductors: From Materials to Device Applications (Wiley, New Jersey, 2011)

    Google Scholar 

  23. Q. Li (ed.), Intelligent Stimuli Responsive Materials: From Well-Defined Nanostructures to Applications (Wiley, New Jersey, 2013)

    Google Scholar 

  24. Q. Li (ed.), Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications (Springer, Heidelberg, 2014)

    Google Scholar 

  25. Q. Li (ed.), Anisotropic Nanomaterials: Preparation, Properties, and Applications (Springer, Heidelberg, 2015)

    Google Scholar 

  26. B. Bahadur (ed.), Liquid Crystals: Applications and Uses, vol. 1–3 (World Scientific, Singapore, 1990)

    Google Scholar 

  27. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993)

    Google Scholar 

  28. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, U.K., 1992)

    Book  Google Scholar 

  29. P.J. Collings, Liquid Crystals: Natures Delicate Phase of Matter (Princeton University Press, Princeton, 2002)

    Google Scholar 

  30. P.J. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics (Taylor & Francis, London, U. K., 1997)

    Book  Google Scholar 

  31. P. Oswald, P. Pieranski, Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, CRC Press, Boca Raton, Florida, 2005)

    Google Scholar 

  32. J.W. Goodby, P.J. Collings, T. Kato, C. Tschierske, H. Glesson, P. Raynes (eds.), Handbook of Liquid Crystals, 2nd edn. (Wiley-VCH, Weinheim, 2014)

    Google Scholar 

  33. P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, CRC Press, Boca Raton, Florida, 2005)

    Google Scholar 

  34. G.W. Gray, G.R. Luckhurst (eds.), The Molecular Physics of Liquid Crystals (Academic Press, London, U.K., 1997)

    Google Scholar 

  35. S. Kumar (ed.), Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions (Cambridge University Press, Cambridge, U.K., 2001)

    Google Scholar 

  36. A. Jakli, A. Saupe, One- and Two-dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals (CRC PressFlorida, Boca Raton, 2006)

    Book  Google Scholar 

  37. G.W. Gray, P.A. Windsor, Liquid Crystals and Plastic Crystals, vol. 1–2 (Ellis Horwood Ltd, Chichester, 1974

    Google Scholar 

  38. M.R. Fisch, Liquid Crystals, Laptops and Life (World Scientific, Singapore, 2004)

    Book  Google Scholar 

  39. R.H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology (Wiley, New Jersey, 2011)

    Book  Google Scholar 

  40. G.H. Brown, J.J. Wolken, Liquid Crystals and Biological Structures (Academic Press, New York, 1979)

    Google Scholar 

  41. S.J. Woltman, G.D. Jay, G.P. Crawford (eds.), Liquid Crystals: Frontiers in Biomedical Applications (World Scientific, New Jersey, 2007)

    Google Scholar 

  42. T.J. Sluckin, D.A. Dunmur, H. Stegemeyer (eds.), Crystals That Flow: Classic Papers from the History of Liquid Crystals (CRC Press, Boca Raton, Florida, 2004)

    Google Scholar 

  43. D. Dunmur, T. Sluckin, Soap, Science and Flat-Screen TVs—A History of Liquid Crystals (Oxford University Press, Oxford, 2011)

    Google Scholar 

  44. A.G. Petrov, The Lyotropic state of Matter: Molecular Physics and Living Matter Physics (Gordon & Breach Science Pub, Amsterdam, The Netherlands, 1999)

    Google Scholar 

  45. N. Garti, P. Somasundaran, R. Mezzenga (eds.), Self-Assembled Supramolecular Architectures: Lyotropic Liquid Crystals (Wiley, New Jersey, 2012)

    Google Scholar 

  46. C. Tschierske (ed.), Liquid Crystals: Materials Design and Self-Assembly (Springer, Berlin, 2012)

    Google Scholar 

  47. J.L. Serrano (ed.), Metallomesogens: Synthesis, Properties and Applications (Wiley-VCH, Weinheim, Germany, 1996)

    Google Scholar 

  48. H.-S. Kitzerow, C. Bahr (eds.), Chirality in Liquid Crystals (Springer, New York, 2001)

    Google Scholar 

  49. J.W. Goodby, Ferroelectric Liquid Crystals: Principles, Properties and Applications (Gordon and Breach, Philadelphia, PA, 1991)

    Google Scholar 

  50. S.T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, Germany, 1999)

    Book  Google Scholar 

  51. I. Musevic, R. Blinc, B. Zeks, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals (World Scientific, Singapore, 2000)

    Book  Google Scholar 

  52. A.M. Donald, A.H. Windle, S. Hanna, Liquid Crystalline Polymers (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  53. M. Warner, E.M. Terentjev, Liquid Crystal Elastomers (Oxford University Press, New York, 2003)

    MATH  Google Scholar 

  54. H.K. Bisoyi, Q. Li, Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc. Chem. Res. 47, 3184–3195 (2014)

    Article  Google Scholar 

  55. Y. Wang, Q. Li, Light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 24, 1926–1945 (2012)

    Article  Google Scholar 

  56. L. Wang, Q. Li, Stimuli-directing self-organized 3D liquid crystalline nanostructures: from materials design to photonic applications. Adv. Funct. Mater. 26, 10–28 (2016)

    Article  Google Scholar 

  57. H.K. Bisoyi, Q. Li, Light-directed dynamic chirality inversion in functional self-organized helical superstructures. Angew. Chem. Int. Ed. 55, 2994–3010 (2016)

    Google Scholar 

  58. S. Kumar, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers (CRC Press, Boca Raton, Florida, 2011)

    Google Scholar 

  59. R.J. Bushby, S.M. Kelly, M. O’Neill (eds.), Liquid Crystalline Semiconductors: Materials, Properties and Applications (Springer, Dordrecht, The Netherlands, 2013)

    Google Scholar 

  60. D. Adam, P. Schumacher, J. Simmerer, L. Haussling, K. Siemensmeyer, K.H. Etzbachi, H. Ringsdorf, D. Haarer, Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371, 141–143 (1994)

    Article  Google Scholar 

  61. X. Feng, V. Marcon, W. Pisula, M.R. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko, K. Kremer, K. Mullen, Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat. Mater. 8, 421–426 (2009)

    Article  Google Scholar 

  62. S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew. Chem. Int. Ed. 46, 4832–4887 (2007)

    Article  Google Scholar 

  63. S. Kumar, Self-organization of disc-like molecules: chemical aspects. Chem. Soc. Rev. 35, 83–109 (2006)

    Article  Google Scholar 

  64. R.J. Bushby, O.R. Lozman, Discotic liquid crystals 25 years on. Curr. Opin. Colloid Interface Sci. 7, 343–354 (2002)

    Article  Google Scholar 

  65. S. Kumar, Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq. Cryst. 31, 1037–1059 (2004)

    Article  Google Scholar 

  66. R.J. Bushby, K. Kawata, Liquid crystals that affected the world: discotic liquid crystals. Liq. Cryst. 38, 1415–1426 (2011)

    Article  Google Scholar 

  67. B.R. Kaafarani, Discotic liquid crystals for opto-electronic applications. Chem. Mater. 23, 378–396 (2011)

    Article  Google Scholar 

  68. H.K. Bisoyi, S. Kumar, Discotic nematic liquid crystals: science and technology. Chem. Soc. Rev. 39, 264–285 (2010)

    Article  Google Scholar 

  69. J. Wu, W. Pisula, K. Mullen, Graphene as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Article  Google Scholar 

  70. H.K. Bisoyi, S. Kumar, Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem. Soc. Rev. 40, 306–319 (2011)

    Article  Google Scholar 

  71. S. Chandrasekhar, S.K. Prasad, Recent developments in discotic liquid crystals. Contemporary Phys. 40, 237–245 (1999)

    Article  Google Scholar 

  72. S. Sergeyev, W. Pisula, Y.H. Geerts, Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007)

    Article  Google Scholar 

  73. D. Janietz, Structure formation control of disc-shaped molecules. Mol. Cryst. Liq. Cryst. 396, 251–264 (2003)

    Article  Google Scholar 

  74. C.D. Simpson, J. Wu, M.D. Watson, K. Mullen, From graphite molecules to columnar superstructures-an exercise in nanoscience. J. Mater. Chem. 14, 494–504 (2004)

    Article  Google Scholar 

  75. D. Janietz, Structure formation of functional sheet-shaped mesogens. J. Mater. Chem. 8, 265–274 (1998)

    Article  Google Scholar 

  76. W. Pisula, X. Feng, K. Mullen, Tuning the columnar organization of discotic polycyclic aromatic hydrocarbons. Adv. Mater. 22, 3634–3649 (2010)

    Article  Google Scholar 

  77. K. Kawata, Orientation control and fixation of discotic liquid crystal. Chem. Rec. 2, 59–80 (2002)

    Article  MathSciNet  Google Scholar 

  78. H. Mori, The wide view (WV) film for enhancing the field of view of LCDs. J. Display Technol. 1, 179–186 (2005)

    Article  Google Scholar 

  79. K. Ohta, K. Hatsusaka, M. Sugibayashi, M. Ariyoshi, K. Ban, F. Maeda, R. Naito, K. Nishizawa, A.M. Van de Craats, J.M. Warman, Discotic liquid crystalline semiconductors. Mol. Cryst. Liq. Cryst. 397, 25–45 (2003)

    Article  Google Scholar 

  80. M. Funahasi, Development of liquid-crystalline semiconductors with high carrier mobilities and their application to thin-film transistors. Polym J. 41, 459–469 (2009)

    Article  Google Scholar 

  81. B.R. Kaafarani, Discotic liquid crystals for opto-electronic applications. Chem. Mater. 23, 378–396 (2011)

    Article  Google Scholar 

  82. M. O’Neill, S.M. Kelly, Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011)

    Article  Google Scholar 

  83. J. Wu, W. Pisula, K. Mullen, Graphene as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Article  Google Scholar 

  84. W. Pisula, M. Zorn, J.Y. Chang, K. Mullen, R. Zentel, Liquid crystalline ordering and charge transport in semiconducting materials. Macromol. Rapid Commun. 30, 1179–1202 (2009)

    Article  Google Scholar 

  85. E. Grelet, H. Bock, T. Brunet, J. Kelber, O. Thiebaut, P. Jolinat, S. Mirzaei, P. Destruel, Toward organic photovoltaic cells based on the self-assembly of discotic columnar liquid crystals. Mol. Cryst. Liq. Cryst. 542, 182–189 (2011)

    Article  Google Scholar 

  86. H. Bock, N. Buffet, E. Grelet, I. Seguy, J. Navarro, P. Destruel, Novel columnar LCs for a new generation of organic solar cells. Proc. SPIE 6911(69110N), 1–8 (2008)

    Google Scholar 

  87. B.A. Gregg, M.A. Fox, A.J. Bard, Photovoltaic effect in symmetrical cells of a liquid crystal porphyrin. J. Phys. Chem. 94, 1586–1598 (1990)

    Article  Google Scholar 

  88. B.A. Gregg, M.A. Fox, A.J. Bard, 2,3,7,8,12,13,17,18,-Octakis(β-hydroxyethyl)porphyrin and its liquid crystalline derivatives: synthesis and characterization. J. Am. Chem. Soc. 111, 3024–3029 (1989)

    Article  Google Scholar 

  89. B.A. Gregg, Effect of long range order, temperature and phase on the photoconversion properties of liquid crystal porphyrin films. Mol. Cryst. Liq. Cryst. 257, 219–227 (1994)

    Article  Google Scholar 

  90. P.G. Schouten, J.M. Warman, M.P. de Haas, M.A. Fox, H.-L. Pan, Charge migration in supramolecular stacks of peripherally substituted porphyrins. Nature 353, 736–737 (1991)

    Article  Google Scholar 

  91. Q. Sun, L. Dai, X. Zhou, L. Li, Q. Li, Bilayer- and bulk-heterojunction solar cells using liquid crystalline porphyrins as donors by solution processing. Appl. Phys. Lett. 91, 253505 (2007)

    Article  Google Scholar 

  92. L. Li, S.-W. Kang, J. Harden, Q. Sun, X. Zhou, L. Dai, A. Jakli, S. Kumar, Q. Li, Nature-inspired light-harvesting liquid crystalline porphyrins for organic photovoltaics. Liq. Cryst. 35, 233–239 (2008)

    Article  Google Scholar 

  93. X. Zhou, S.-W. Kang, S. Kumar, R.R. Kulkarni, S.Z.D. Cheng, Q. Li, Self-assembly of porphyrin and fullerene supramolecular complex into highly ordered nanostructure by simple thermal annealing. Chem. Mater. 20, 3551–3553 (2008)

    Article  Google Scholar 

  94. S.-W. Kang, Q. Li, B.D. Chapman, R. Pindak, J.O. Cross, L. Li, M. Nakata, S. Kumar, Microfocus X-ray diffraction study of the columnar phase of porphyrin-based mesogens. Chem. Mater. 19, 5657–5663 (2007)

    Article  Google Scholar 

  95. K. Petritsch, R.H. Friend, A. Lux, G. Rozenberg, S.C. Moratti, A.B. Holmes, Liquid crystalline phthalocyanines in organic solar cells. Synth. Metals 102, 1776–1777 (1999)

    Google Scholar 

  96. K. Petritsch, J.J. Dittmer, E.A. Marseglia, R.H. Friend, A. Lux, G.G. Rozenberg, S.C. Moratti, A.B. Holmes, Dye-based donor/acceptor solar cells. Solar Energy Mater. Solar Cells 61, 63–72 (2000)

    Article  Google Scholar 

  97. T. Hori, N. Fukuoka, T. Masuda, Y. Miyake, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Bulk heterojunction organic solar cells utilizing 1,4,8,11,15,18,22,25-octahexylphthalocyanine. Sol. Energy Mater. Sol. Cells 95, 3087–3092 (2011)

    Google Scholar 

  98. Q.D. Dao, T. Hori, K. Fukumura, T. Masuda, T. Kamikado, A. Fujii, Y. Shimizu, M. Ozaki, Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives. Appl. Phys. Lett. 101, 263301 (2012)

    Article  Google Scholar 

  99. T. Hori, T. Masuda, N. Fukuoka, T. Hayashi, Y. Miyake, T. Kamikado, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Non-peripheral octahexylphthalocyanine doping effects in bulk heterojunction polymer solar cells. Org. Electron. 13, 335–340 (2012)

    Article  Google Scholar 

  100. Q.-D. Dao, T. Hori, K. Fukumura, T. Masuda, T. Kamikado, A. Fujii, Y. Shimizu, M. Ozaki, Effect of processing additives on nanoscale phase separation, crystallization and photovoltaic performance of solar cells based on mesogenic phthalocyanine. Org. Electron. 14, 2628–2634 (2013)

    Article  Google Scholar 

  101. T. Masuda, T. Hori, K. Fukumura, Y. Miyake, D.Q. Duy, T. Hayashi, T. Kamokado, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Photovoltaic properties of 1,4,8,11,15,18,22,25-octaalkylphthalocyanine doped polymer bulk heterojunction solar cells. Jpn. J. Appl. Phys. 51, 02BK15 1–4 (2012)

    Google Scholar 

  102. L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R.H. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001)

    Article  Google Scholar 

  103. L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, R.H. Friend, J.D. MacKenzie, Efficient organic photovoltaics from soluble discotic liquid crystalline materials. Physica E 14, 263–267 (2002)

    Article  Google Scholar 

  104. L. Schmidt-Mende, M. Watson, K. Mullen, R.H. Friend, Organic thin film photovoltaic devices from discotic materials. Mol. Cryst. Liq. Cryst. 396, 73–90 (2003)

    Article  Google Scholar 

  105. T. Hasheider, S.A. Benning, M.W. Lauhof, H.-S. Kitzerow, H. Bock, M.D. Watson, K. Mullen, Organic heterojunction photovoltaic cells made of discotic, mesogenic materials. Mol. Cryst. Liq. Cryst. 413, 461–472 (2004)

    Article  Google Scholar 

  106. J. Li, M. Kastler, W. Pisula, J.W.F. Robertson, D. Wasserfallen, A.C. Grimsdale, J. Wu, K. Mullen, Organic bulk-heterojunction photovoltaics based on alkyl substituted discotics. Adv. Funct. Mater. 17, 2528–2533 (2007)

    Article  Google Scholar 

  107. H.C. Hesse, J. Weickert, M. Al-Hussein, L. Dossel, X. Feng, K. Mullen, L. Schmidt-Mende, Discotic materials for organic solar cells: effect of chemical structure on assembly and performance. Sol. Energy Mater. Sol. Cells 94, 560–567 (2010)

    Article  Google Scholar 

  108. C. Liu, A. Fechtenkotter, M.D. Watson, K. Mullen, A.J. Bard, Room temperature discotic liquid crystalline thin films of hexa-peri-hexabenzocoronene: synthesis and optoelectronic properties. Chem. Mater. 15, 124–130 (2003)

    Article  Google Scholar 

  109. M. Al-Hussein, H.C. Hesse, J. Weickert, L. Dossel, X. Feng, K. Mullen, L. Schmidt-Mende, Structural properties of the active layer of discotic hexabenzocoronene/perylene diimide bulk heterojunction photovoltaic devices: the role of alkyl side chain length. Thin Solid Films 520, 307–313 (2011)

    Article  Google Scholar 

  110. J.P. Schmidtke, R.H. Friend, M. Kastler, K. Mullen, Control of morphology in efficient photovoltaic diodes from discotic liquid crystals. J. Chem. Phys. 124(174704), 1–6 (2006)

    Google Scholar 

  111. S.J. Kang, S. Ahn, J.B. Kim, C. Schenck, A.M. Hiszpanski, S. Oh, T. Schiros, Y.-L. Loo, C. Nuckolls, Using self-organization to control morphology in molecular photovoltaics. J. Am. Chem. Soc. 135, 2207–2212 (2012)

    Article  Google Scholar 

  112. X. Feng, M. Liu, W. Pisula, M. Takase, J. Li, K. Mullen, Supramolecular organization and photovoltaics of triangle-shaped discotic graphenes with swallow-tailed alkyl substituents. Adv. Mater. 20, 2684–2689 (2008)

    Article  Google Scholar 

  113. J.Y. Kim, A.J. Bard, Organic donor/acceptor heterojunction photovoltaic devices based on zinc phthalocyanine and a liquid crystalline perylene diimide. Chem. Phys. Lett. 383, 11–15 (2004)

    Article  Google Scholar 

  114. M. Oukachmih, P. Destruel, I. Seguy, G. Ablart, P. Jolinat, S. Archambeau, M. Mabiala, S. Fouet, H. Bock, New organic discotic materials for photovoltaic conversion. Sol. Energy Mater. Sol. Cells 85, 535–543 (2005)

    Article  Google Scholar 

  115. Q. Zheng, G. Fang, W. Bai, N. Sun, P. Qin, X. Fan, F. Cheng, L. Yuan, X. Zhao, Efficiency improvement in organic solar cells by inserting a discotic liquid crystal. Sol. Energy Mater. Sol. Cells 95, 2200–2205 (2011)

    Article  Google Scholar 

  116. S. Jeong, Y. Kwon, B.-D. Choi, H. Ade, Y.S. Han, Improved efficiency of bulk heterojunction poly(3-hexylthiophene):[6, 6]-phenyl-C61-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives. Appl. Phys. Lett. 96, 183305 (2010)

    Article  Google Scholar 

  117. X. Chen, L. Chen, Y. Chen, Self-assembly of dscotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells. RSC Adv. 4, 3627–3632 (2014)

    Article  Google Scholar 

  118. Y. Shi, L. Tan, Y. Chen, Dye-sensitized nanoarrays with discotic liquid crystals as interlayer for high-efficiency inverted polymer solar cells. ACS Appl. Mater. Interfaces 6, 17848–17856 (2014)

    Article  Google Scholar 

  119. M. Bajpai, N. Yadav, S. Kumar, R. Srivastava, R. Dhar, Bulk heterojunction solar cells based on self-assembling disc-shaped liquid crystalline material. Liq. Cryst. 43, 305–313 (2016)

    Google Scholar 

  120. A.R.K. Selvaraj, V. Lakshminarayanan, R. Dhar, S. Kumar, Dye-sensitized solar cells with iodine-free discotic electrolytes. Liq. Cryst. 42, 1815–1822 (2015)

    Article  Google Scholar 

  121. K. Yuan, L. Chen, Y. Chen, Photovoltaic performance enhancement of P3HT/PCBM solar cells driven by incorporation of conjugated liquid crystalline rod-coil block copolymers. J. Mater. Chem. C 2, 3835–3845 (2014)

    Article  Google Scholar 

  122. K. Hirota, K. Tajima, K. Hashimoto, Physicochemical study of discotic liquid crystal decacyclene derivative and utilization in polymer photovoltaic devices. Synth. Met. 157, 290–296 (2007)

    Article  Google Scholar 

  123. S. Archambeau, H. Bock, I. Seguy, P. Jolinat, P. Destruel, Organic solar cells with an ultra thin organized hole transport layer. J. Mater. Sci.: Mater. Electron. 18, 919–923 (2007)

    Google Scholar 

  124. T.N. Ahipa, K.M. Anoop, R.K. Pai, Hexagonal columnar liquid crystals as a processing additive to a P3HT:PCBM photoactive layer. New J. Chem. 39, 8439–8445 (2015)

    Article  Google Scholar 

  125. D. Meng, D. Sun, C. Zhong, T. Liu, B. Fan, L. Huo, Y. Li, W. Jiang, H. Choi, T. Kim, J.Y. Kim, Y. Sun, Z. Wang, A.J. Heeger, High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J. Am. Chem. Soc. 137, 11156–11162 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The preparation of this chapter benefited from the support to Quan Li by Ohio Third Frontier, US Department of Energy (DOE), US Department of Defense Multidisciplinary University Research Initiative (DoD MURI), US Air Force Office of Scientific Research (AFOSR), US Army Research Office (ARO), US National Aeronautics and Space Administration (NASA), and US National Science Foundation (NSF).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bisoyi, H.K., Li, Q. (2016). Discotic Liquid Crystals for Self-organizing Photovoltaics. In: Li, Q. (eds) Nanomaterials for Sustainable Energy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32023-6_6

Download citation

Publish with us

Policies and ethics