Skip to main content

Piezoelectric Nanomaterials for Energy Harvesting

  • Chapter
  • First Online:
Nanomaterials for Sustainable Energy

Part of the book series: NanoScience and Technology ((NANO))

  • 2432 Accesses

Abstract

Piezoelectric nanomaterials have many important and unique properties which make them suitable for a wide range of applications including consumer goods, motor vehicles, medical devices and scientific instrumentation. Vibrations, biomechanical motions, and waves are examples of ever-present mechanical energy in the environment. The small size and unique electrical and mechanical properties inherent in piezoelectric nanomaterials make them ideal for harvesting these renewable energy sources. ZnO nanostructures have been widely studied for energy harvesting due to their enhanced piezoelectricity and scalable, reproducible synthesis techniques. Single atomic layer MoS2 is an emerging material for energy harvesting due to the existence of piezoelectric properties not found in the bulk material. Bio-inspired piezoelectric materials such as peptide nanotubes have excellent mechanical properties and are promising candidates for nanogenerator devices. Many different nanogenerator architectures have been developed and steadily improving performance has led to their incorporation into self-powered nanodevice systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Zhang, Y. Liu, Z.L. Wang, Fundamental theory of piezotronics. Adv. Mater. 23, 3004–3013 (2011)

    Article  Google Scholar 

  2. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  3. R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201–1205 (2009)

    Article  Google Scholar 

  4. M.J. Madou. Fundamentals of Microfabrication: the Science of Miniaturization (CRC press, 2002)

    Google Scholar 

  5. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)

    Article  Google Scholar 

  6. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone, Z.L. Wang, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014)

    Article  Google Scholar 

  7. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS(2): a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  Google Scholar 

  8. Z.L. Wang, ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R. 64, 33–71 (2009)

    Article  Google Scholar 

  9. R. Agrawal, B. Peng, E.E. Gdoutos, H.D. Espinosa, Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8, 3668–3674 (2008)

    Article  Google Scholar 

  10. H. Morkoç, Ü. Özgür, Zinc Oxide : fundamentals, Materials and Device Technology (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  11. X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)

    Article  Google Scholar 

  12. S. Xu, Y. Wei, J. Liu, R. Yang, Z.L. Wang, Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Lett. 8, 4027–4032 (2008)

    Article  Google Scholar 

  13. Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. 105, 113707 (2009)

    Article  Google Scholar 

  14. U. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  15. L.J. Brillson, Y. Lu, ZnO Schottky barriers and ohmic contacts. J. Appl. Phys. 109, 121301 (2011)

    Article  Google Scholar 

  16. Y. Gao, Z.L. Wang, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007)

    Article  Google Scholar 

  17. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)

    Article  Google Scholar 

  18. K.M. McPeak, T.P. Le, N.G. Britton, Z.S. Nickolov, Y.A. Elabd, J.B. Baxter, Chemical bath deposition of ZnO nanowires at near-neutral ph conditions without hexamethylenetetramine (Hmta): understanding the role of Hmta in ZnO nanowire growth. Langmuir 27, 3672–3677 (2011)

    Article  Google Scholar 

  19. S. Xu, Z.L. Wang, Oxide nanowire arrays for light-emitting diodes and piezoelectric energy harvesters. Pure Appl. Chem. 83, 2171–2198 (2011)

    Article  Google Scholar 

  20. S. Xu, N. Adiga, S. Ba, T. Dasgupta, C.F. Wu, Z.L. Wang, Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3, 1803–1812 (2009)

    Article  Google Scholar 

  21. J.H. Tian, J. Hu, S.S. Li, F. Zhang, J. Liu, J. Shi, X. Li, Z.Q. Tian, Y. Chen, Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology 22, 245601 (2011)

    Article  Google Scholar 

  22. H.E. Unalan, P. Hiralal, N. Rupesinghe, S. Dalal, W.I. Milne, G.A.J. Amaratunga, Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19, 255608 (2008)

    Article  Google Scholar 

  23. J. Yeo, S. Hong, M. Wanit, H.W. Kang, D. Lee, C.P. Grigoropoulos, H.J. Sung, S.H. Ko, Rapid, one-step, digital selective growth of ZnO nanowires on 3d structures using laser induced hydrothermal growth. Adv. Funct. Mater. 23, 3316–3323 (2013)

    Article  Google Scholar 

  24. J. Brivio, D.T. Alexander, A. Kis, Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 11, 5148–5153 (2011)

    Article  Google Scholar 

  25. P. Young, Lattice parameter measurements on molybdenum disulphide. J. Phys. D Appl. Phys. 1, 936 (1968)

    Article  Google Scholar 

  26. K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y. Shi, H. Zhang, C.S. Lai, L.J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012)

    Article  Google Scholar 

  27. K. Kam, B. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group Vib transition metal dichalcogenides. J. Phys. Chem. 86, 463–467 (1982)

    Article  Google Scholar 

  28. S. Lebegue, O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B. 79, 115409 (2009)

    Article  Google Scholar 

  29. S. Manzeli, A. Allain, A. Ghadimi, A. Kis, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15, 5330–5335 (2015)

    Article  Google Scholar 

  30. E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43–48 (2011)

    Google Scholar 

  31. Y. Li, Y. Rao, K.F. Mak, Y. You, S. Wang, C.R. Dean, T.F. Heinz, Probing symmetry properties of few-layer MoS2 and H-Bn by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013)

    Article  Google Scholar 

  32. H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z. J. Wong, Z. Ye, X. Yin, X. Zhang, Observation of piezoelectricity in monolayer molybdenum disulfide, arXiv preprint arXiv:1408.7074 (2014)

  33. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013)

    Article  Google Scholar 

  34. S. Wu, C. Huang, G. Aivazian, J.S. Ross, D.H. Cobden, X. Xu, Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7, 2768–2772 (2013)

    Article  Google Scholar 

  35. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T. Wang, C.S. Chang, L.J. Li, T.W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    Article  Google Scholar 

  36. M.I. Utama, Q. Zhang, J. Zhang, Y. Yuan, F.J. Belarre, J. Arbiol, Q. Xiong, Recent developments and future directions in the growth of nanostructures by Van Der Waals epitaxy. Nanoscale 5, 3570–3588 (2013)

    Article  Google Scholar 

  37. Y. Shi, W. Zhou, A.Y. Lu, W. Fang, Y.H. Lee, A.L. Hsu, S.M. Kim, K.K. Kim, H.Y. Yang, L.J. Li, J.C. Idrobo, J. Kong, Van Der Waals epitaxy of MoS(2) layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012)

    Article  Google Scholar 

  38. H. Ago, H. Endo, P. Solis-Fernandez, R. Takizawa, Y. Ohta, Y. Fujita, K. Yamamoto, M. Tsuji, Controlled Van Der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Appl. Mater. Interfaces. 7, 5265–5273 (2015)

    Article  Google Scholar 

  39. M. Reches, E. Gazit, Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003)

    Article  Google Scholar 

  40. N. Kol, L. Adler-Abramovich, D. Barlam, R.Z. Shneck, E. Gazit, I. Rousso, Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005)

    Article  Google Scholar 

  41. A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, G. Rosenman, Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010)

    Article  Google Scholar 

  42. A. Heredia, I. Bdikin, S. Kopyl, E. Mishina, S. Semin, A. Sigov, K. German, V. Bystrov, J. Gracio, A.L. Kholkin, Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes. J. Phys. D Appl. Phys. 43, 462001 (2010)

    Article  Google Scholar 

  43. J. Zhang, X. Wu, Z. Gan, X. Zhu, Y. Jin, Unidirectionally aligned diphenylalanine nanotube/microtube arrays with excellent supercapacitive performance. Nano Res. 7, 929–937 (2014)

    Article  Google Scholar 

  44. M. Sakurai, P. Koley, M. Aono, A new approach to molecular self-assembly through formation of dipeptide-based unique architectures by artificial supersaturation. Chem. Commun. 50, 12556–12559 (2014)

    Article  Google Scholar 

  45. S. Scanlon, A. Aggeli, Self-assembling peptide nanotubes. Nano Today 3, 22–30 (2008)

    Article  Google Scholar 

  46. M. Reches, E. Gazit, Controlled patterning of aligned self-assembled peptide nanotubes. Nat. Nanotechnol. 1, 195–200 (2006)

    Article  Google Scholar 

  47. V. Nguyen, K. Jenkins, R. Yang, Epitaxial growth of vertically aligned piezoelectric diphenylalanine peptide microrods with uniform polarization. Nano Energy 17, 323–329 (2015)

    Article  Google Scholar 

  48. R. Yang, Y. Qin, L. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009)

    Article  Google Scholar 

  49. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)

    Article  Google Scholar 

  50. A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.-H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013)

    Article  Google Scholar 

  51. Y. Zhou, W. Liu, X. Huang, A. Zhang, Y. Zhang, Z. L. Wang, Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res.1–8 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rusen Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jenkins, K., Yang, R. (2016). Piezoelectric Nanomaterials for Energy Harvesting. In: Li, Q. (eds) Nanomaterials for Sustainable Energy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32023-6_5

Download citation

Publish with us

Policies and ethics