Skip to main content

Nanomaterials for Stretchable Energy Storage and Conversion Devices

  • Chapter
  • First Online:
Nanomaterials for Sustainable Energy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

With the continuous progress of the energy use and demand, functionalized energy storage and conversion device s (ESCDs) are urgently needed. In the meantime, stretchable ESCDs are attracting intensive attention due to their great potential for specific applications, such as wearable electronics, an electronic skin, implant electronics, and other collapsible gadgets. Design and synthesis of nanomaterials are at the core in the development of highly stretchable supercapacitors, batteries, and solar cells for such applications. This chapter first provides a brief summary of research development on the stretchable ESCDs in the past decade through various strategies of device design and manufacturing approach. After that, the focuses are on the advanced engineering of nanomaterials as active materials to achieve the stretchability of these ESCDs while maintaining a stable and functional performance. Finally, some of the challenges and the important directions in the areas of design and synthesis of nanomaterial facing the stretchable ESCDs are discussed concisely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    Article  Google Scholar 

  2. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012)

    Article  Google Scholar 

  3. H.G. Zhang, X.D. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277–281 (2011)

    Article  Google Scholar 

  4. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  5. W. Gao, N. Singh, L. Song, Z. Liu, A.L. Reddy, L. Ci, R. Vajtai, Q. Zhang, B.Q. Wei, P.M. Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6, 496–500 (2011)

    Article  Google Scholar 

  6. K.Y. Xie, Z. Lu, H. Huang, W. Lu, Y. Lai, J. Li, L. Zhou, Y. Liu, Iron supported C@Fe3O4 nanotube array: a new type of 3d anode with low-cost for high performance lithium-ion batteries. J. Mater. Chem. 22, 5560–5567 (2012)

    Article  Google Scholar 

  7. J.-H. Ahn, J.H. Je, Stretchable electronics: materials, architectures and integrations. J. Phys. D Appl. Phys. 45, 103001 (2012)

    Article  Google Scholar 

  8. D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333, 838–843 (2011)

    Article  Google Scholar 

  9. B.G. Choi, J. Hong, W.H. Hong, P.T. Hammond, H. Park, Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5, 7205–7213 (2011)

    Article  Google Scholar 

  10. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, A.N. Tiwari, Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 10, 857–861 (2011)

    Article  Google Scholar 

  11. N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A.L. Reddy, A. Vlad, P.M. Ajayan, Paintable battery. Sci. Rep. 2, 481 (2012)

    Article  Google Scholar 

  12. M. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwodiauer, S. Bauer, Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv. Mater. 22, 2065–2067 (2010)

    Article  Google Scholar 

  13. C. Wang, W. Zheng, Z. Yue, C.O. Too, G.G. Wallace, Buckled, stretchable polypyrrole electrodes for battery applications. Adv. Mater. 23, 3580–3584 (2011)

    Article  Google Scholar 

  14. S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T.I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y. Huang, U. Paik, J.A. Rogers, Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)

    Article  Google Scholar 

  15. X. Li, T. Gu, B.Q. Wei, Dynamic and galvanic stability of stretchable supercapacitors. Nano Lett. 12, 6366–6371 (2012)

    Article  Google Scholar 

  16. C. Yu, C. Masarapu, J. Rong, B.Q. Wei, H. Jiang, Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 21, 4793–4797 (2009)

    Article  Google Scholar 

  17. J. Lee, J. Wu, M. Shi, J. Yoon, S.I. Park, M. Li, Z. Liu, Y. Huang, J.A. Rogers, Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23, 986–991 (2011)

    Article  Google Scholar 

  18. J. Lee, J. Wu, J.H. Ryu, Z. Liu, M. Meitl, Y.-W. Zhang, Y. Huang, J.A. Rogers, Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. Small 8, 1851–1856 (2012)

    Article  Google Scholar 

  19. J. Yoon, A.J. Baca, S.I. Park, P. Elvikis, J.B. Geddes, L. Li, R.H. Kim, J. Xiao, S. Wang, T.H. Kim, M.J. Motala, B.Y. Ahn, E.B. Duoss, J.A. Lewis, R.G. Nuzzo, P.M. Ferreira, Y. Huang, A. Rockett, J.A. Rogers, Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008)

    Article  Google Scholar 

  20. D.J. Lipomi, B.C. Tee, M. Vosgueritchian, Z. Bao, Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011)

    Article  Google Scholar 

  21. M. Kaltenbrunner, M.S. White, E.D. Glowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012)

    Article  Google Scholar 

  22. S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, H. Peng, Wearable solar cells by stacking textile electrodes. Angew. Chem. Int. Ed. 53, 6110–6114 (2014)

    Article  Google Scholar 

  23. Y. Ding, M.A. Invernale, G.A. Sotzing, Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ACS Appl. Mater. Interfaces 2, 1588–1593 (2010)

    Article  Google Scholar 

  24. Z. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H. Yu, H. Jiang, Origami lithium-ion batteries. Nat. Commun. 5, 3140 (2014)

    Google Scholar 

  25. Z. Song, X. Wang, C. Lv, Y. An, M. Liang, T. Ma, D. He, Y.-J. Zheng, S.-Q. Huang, H. Yu, H. Jiang, Kirigami-based stretchable lithium-ion batteries. Sci. Rep. 5, 10988 (2015)

    Article  Google Scholar 

  26. A. Lamoureux, K. Lee, M. Shlian, S.R. Forrest, M. Shtein, Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015)

    Article  Google Scholar 

  27. S. Wagner, S. Bauer, Materials for stretchable electronics. MRS Bull. 37, 207–213 (2012)

    Article  Google Scholar 

  28. K.Y. Xie, B.Q. Wei, Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 26, 3592–3617 (2014)

    Article  Google Scholar 

  29. Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su, J.G. Kim, S.J. Yoo, C. Uher, N.A. Kotov, Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013)

    Article  Google Scholar 

  30. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011)

    Article  Google Scholar 

  31. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009)

    Article  Google Scholar 

  32. M. Zu, Q. Li, G. Wang, J.-H. Byun, T.-W. Chou, Carbon nanotube fiber based stretchable conductor. Adv. Funct. Mater. 23, 789–793 (2013)

    Article  Google Scholar 

  33. F. Xu, X. Wang, Y. Zhu, Y. Zhu, Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 22, 1279–1283 (2012)

    Article  MathSciNet  Google Scholar 

  34. Y. Zhu, F. Xu, Buckling of aligned carbon nanotubes as stretchable conductors: a new manufacturing strategy. Adv. Mater. 24, 1073–1077 (2012)

    Article  MathSciNet  Google Scholar 

  35. L. Cai, J. Li, P. Luan, H. Dong, D. Zhao, Q. Zhang, X. Zhang, M. Tu, Q. Zeng, W. Zhou, S. Xie, Highly transparent and conductive stretchable conductors based on hierarchical reticulate single-walled carbon nanotube architecture. Adv. Funct. Mater. 22, 5238–5244 (2012)

    Article  Google Scholar 

  36. W. Weng, Q. Sun, Y. Zhang, S. He, Q. Wu, J. Deng, X. Fang, G. Guan, J. Ren, H. Peng, A gum-like lithium-ion battery based on a novel arched structure. Adv. Mater. 27, 1363–1369 (2015)

    Article  Google Scholar 

  37. L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010)

    Article  Google Scholar 

  38. Z. Yang, J. Deng, X. Sun, H. Li, H. Peng, Stretchable, wearable dye-sensitized solar cells. Adv. Mater. 26, 2643–2647 (2014)

    Article  Google Scholar 

  39. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  40. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  Google Scholar 

  41. P. Xu, J. Kang, J.-B. Choi, J. Suhr, J. Yu, F. Li, J.-H. Byun, B.-S. Kim, T.-W. Chou, Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. ACS Nano 8, 9437–9445 (2014)

    Article  Google Scholar 

  42. T. Chen, Y. Xue, A.K. Roy, L. Dai, Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8, 1039–1046 (2014)

    Article  Google Scholar 

  43. D. Qi, Z. Liu, Y. Liu, W.R. Leow, B. Zhu, H. Yang, J. Yu, W. Wang, H. Wang, S. Yin, X. Chen, Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater 27, 5559–5566 (2015)

    Google Scholar 

  44. X. Zang, Q. Chen, P. Li, Y. He, X. Li, M. Zhu, X. Li, K. Wang, M. Zhong, D. Wu, H. Zhu, Highly flexible and adaptable, all-solid-state supercapacitors based on graphene woven-fabric film electrodes. Small 10, 2583–2588 (2014)

    Article  Google Scholar 

  45. X. Zang, M. Zhu, X. Li, X. Li, Z. Zhen, J. Lao, K. Wang, F. Kang, B.Q. Wei, H. Zhu, Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy 15, 83–91 (2015)

    Article  Google Scholar 

  46. J. Zang, C. Cao, Y. Feng, J. Liu, X. Zhao, Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci. Rep. 4, 6492 (2014)

    Article  Google Scholar 

  47. Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang, L. Qu, Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 24, 1856–1861 (2012)

    Article  Google Scholar 

  48. Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013)

    Article  Google Scholar 

  49. L. Liu, Y. Yu, C. Yan, K. Li, Z. Zheng, Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 6, 7260 (2015)

    Article  Google Scholar 

  50. F. Li, J. Chen, X. Wang, M. Xue, G.F. Chen, Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes. Adv. Funct. Mater. 25, 4601–4606 (2015)

    Article  Google Scholar 

  51. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 555–562 (2014)

    Article  Google Scholar 

  52. L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014)

    Article  Google Scholar 

  53. K. Jost, D. Stenger, C.R. Perez, J.K. McDonough, K. Lian, Y. Gogotsi, G. Dion, Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energ. Environ. Sci. 6, 2698–2705 (2013)

    Article  Google Scholar 

  54. S. Rosset, H.R. Shea, Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110, 281–307 (2012)

    Article  Google Scholar 

  55. A.M. Gaikwad, A.M. Zamarayeva, J. Rousseau, H. Chu, I. Derin, D.A. Steingart, Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater. 24, 5071–5076 (2012)

    Article  Google Scholar 

  56. T. Sekitani, T. Someya, Stretchable, large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010)

    Article  Google Scholar 

  57. B. Yue, C. Wang, X. Ding, G.G. Wallace, Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim. Acta 68, 18–24 (2012)

    Article  Google Scholar 

  58. Y. Huang, J. Tao, W. Meng, M. Zhu, Y. Huang, Y. Fu, Y. Gao, C. Zhi, Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518–525 (2015)

    Article  Google Scholar 

  59. H. Jin, L. Zhou, C.L. Mak, H. Huang, W.M. Tang, H.L.W. Chan, High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/stretchable electronics. Nano Energy 11, 662–670 (2015)

    Article  Google Scholar 

  60. J. Zhong, J. Meng, Z. Yang, P. Poulin, N. Koratkar, Shape memory fiber supercapacitors. Nano Energy 17, 330–338 (2015)

    Article  Google Scholar 

  61. P. Xu, B.Q. Wei, Z. Cao, J. Zheng, K. Gong, F. Li, J. Yu, Q. Li, W. Lu, J.-H. Byun, B.-S. Kim, Y. Yan, T.-W. Chou, Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 9, 6088–6096 (2015)

    Article  Google Scholar 

  62. K.Y. Xie, M. Guo, X. Liu, H. Huang, Enhanced efficiencies in thin and semi-transparent dye-sensitized solar cells under low photon flux conditions Using TiO2 nanotube photonic crystal. J. Power Sources 293, 170–177 (2015)

    Article  Google Scholar 

  63. K.Y. Xie, M. Guo, H. Huang, Photonic crystals for sensitized solar cells: fabrication, properties, and applications. J. Mater. Chem. C 3, 10665–10686 (2015)

    Google Scholar 

  64. C. Choi, S.H. Kim, H.J. Sim, J.A. Lee, A.Y. Choi, Y.T. Kim, X. Lepro, G.M. Spinks, R.H. Baughman, S.J. Kim, Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 5, 9387 (2015)

    Article  Google Scholar 

  65. T. Gu, B.Q. Wei, Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors. Nanoscale 7, 11626–11632 (2015)

    Article  Google Scholar 

  66. Y. Liu, S. Gorgutsa, C. Santato, M. Skorobogatiy, Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J. Electrochem. Soc. 159, A349–A356 (2012)

    Google Scholar 

  67. A. Ruland, C. Schulz-Drost, V. Sgobba, D.M. Guldi, Enhancing photocurrent efficiencies by resonance energy transfer in CdTe quantum dot multilayers: towards rainbow solar cells. Adv. Mater. 23, 4573–4577 (2011)

    Article  Google Scholar 

  68. G. Mariani, P.S. Wong, A.M. Katzenmeyer, F. Leonard, J. Shapiro, D.L. Huffaker, Patterned radial GaAs nanopillar solar cells. Nano Lett. 11, 2490–2494 (2011)

    Article  Google Scholar 

  69. R.J. Knuesel, H.O. Jacobs, Self-tiling monocrystalline silicon; a process to produce electrically connected domains of Si and microconcentrator solar cell modules on plastic supports. Adv. Mater. 23, 2727–2733 (2011)

    Article  Google Scholar 

  70. Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 8, 2982–2987 (2008)

    Article  Google Scholar 

  71. D.Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)

    Article  Google Scholar 

  72. B.Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S.I. Park, Y. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009)

    Article  Google Scholar 

  73. J. Ge, H.B. Yao, X. Wang, Y.D. Ye, J.L. Wang, Z.Y. Wu, J.W. Liu, F.J. Fan, H.L. Gao, C.L. Zhang, S.H. Yu, Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angew. Chem. Int. Ed. 52, 1654–1659 (2013)

    Article  Google Scholar 

  74. C. Yan, X. Wang, M. Cui, J. Wang, W. Kang, C.Y. Foo, P.S. Lee, Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Adv. Energy Mater. 4, 1301396 (2013)

    Google Scholar 

  75. Z. Niu, H. Dong, B. Zhu, J. Li, H.H. Hng, W. Zhou, X. Chen, S. Xie, Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25, 1058–1064 (2013)

    Article  Google Scholar 

  76. J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)

    Article  Google Scholar 

  77. J. Li, K.Y. Xie, Y.Q. Lai, Z.A. Zhang, F.Q. Li, X. Hao, X.J. Chen, Y.X. Liu, Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells. J. Power Sources 195, 5344–5350 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial assistance by the National Natural Science Foundation of China (No. 51302219 and 51472204), the Natural Science Foundation of Shannxi Province (No. 2015JM2045), the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 06-QP-2014), the Fundamental Research Funds for the Central Universities (No. 3102014JCQ01019), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20136102120024 and 20136102140001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingqing Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xie, K., Wei, B. (2016). Nanomaterials for Stretchable Energy Storage and Conversion Devices. In: Li, Q. (eds) Nanomaterials for Sustainable Energy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32023-6_4

Download citation

Publish with us

Policies and ethics