Skip to main content

Nanomaterials for Hydrogen Generation from Solar Water Splitting

  • Chapter
  • First Online:
Nanomaterials for Sustainable Energy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Hydrogen generation from solar water splitting has the potential to solve both environmental issues and energy crisis. This chapter begins with the discussion of the basic mechanism of photocatalytic water splitting and fundamental material requirements for particular photocatalysts. TiO2 and alkali metal titanates are first introduced as traditional UV active photocatalysts, followed by Nb2O5, Ta2O5 and their alkali metal oxides. Metal chalcogenides and oxysulfides, nitrides and oxynitrides are then presented as lower bandgap photocatalysts than the corresponding oxides. Cu2O and cobalt oxide nanoparticles are among very few binary oxides that can perform overall water splitting without co-catalysts under visible light. We will then show other newly developed visible light photocatalysts, namely, graphene oxide quantum dots, graphitic C3N4 nanostructures, and carbon-doped boron nitride nanosheets. Plasmonic nanomaterials are included as a special type of photocatalyst. The chapter concludes with discussions on current material issues, challenges and outlook for future photocatalyst development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Fajersztajn, M. Veras, L.V. Barrozo, P. Saldiva, Air pollution: a potentially modifiable risk factor for lung cancer. Nat. Rev. Cancer 13, 674–678 (2013)

    Article  Google Scholar 

  2. B. Subhadra, Natural resources, renewable energy sources, GHG-emission and demographic profiles in United States: a broad analysis for developing sustainable low-carbon energy sector. Energy Sci. Technol. 5, 36–49 (2013)

    Google Scholar 

  3. N. Armaroli, V. Balzani, The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 46, 52–66 (2007)

    Article  Google Scholar 

  4. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  Google Scholar 

  5. A. Fujishima, K. Honda, TiO2 photoelectrochemistry and photocatalysis. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  6. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  Google Scholar 

  7. Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 (2012)

    Article  Google Scholar 

  8. Z.S. Li, W.J. Luo, M.L. Zhang, J.Y. Feng, Z.G. Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 6, 347–370 (2013)

    Article  Google Scholar 

  9. T. Wang, Z. Luo, C. Li, J. Gong, Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem. Soc. Rev. 43, 7469–7484 (2014)

    Article  Google Scholar 

  10. Y. Moriya, T. Takata, K. Domen, Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coordin. Chem. Rev. 257, 1957–1969 (2013)

    Article  Google Scholar 

  11. M.J. Katz, S.C. Riha, N.C. Jeong, A.B.F. Martinson, O.K. Farha, J.T. Hupp, Toward solar fuels: water splitting with sunlight and “rust”? Coordin. Chem. Rev. 256, 2521–2529 (2012)

    Article  Google Scholar 

  12. S.C. Warren, K. Voitchovsky, H. Dotan, C.M. Leroy, M. Cornuz, F. Stellacci, C. Hebert, A. Rothschild, M. Gratzel, Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013)

    Article  Google Scholar 

  13. S. Fukuzumi, D.C. Hong, Y. Yamada, Bioinspired photocatalytic water reduction and oxidation with earth-abundant metal catalysts. J. Phys. Chem. Lett. 4, 3458–3467 (2013)

    Article  Google Scholar 

  14. A.A. Ismail, D.W. Bahnemann, Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol. Energ Mater. Sol. Cells 128, 85–101 (2014)

    Article  Google Scholar 

  15. J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014)

    Google Scholar 

  16. F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35–54 (2008)

    Article  Google Scholar 

  17. X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    Article  Google Scholar 

  18. J. Zhu, D. Chakarov, M. Zäch, Energy efficiency and renewable energy through nanotechnology (Springer, London, 2011)

    Google Scholar 

  19. J.T. Li, N.Q. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5, 1360–1384 (2015)

    Article  Google Scholar 

  20. J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 43, 6920–6937 (2014)

    Article  Google Scholar 

  21. Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27, 2557–2582 (2015)

    Article  Google Scholar 

  22. A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  Google Scholar 

  23. J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114, 13118–13125 (2010)

    Article  Google Scholar 

  24. T. Kawai, T. Sakata, Photocatalytic decomposition of gaseous water over TiO2 and TiO2—RuO2 surfaces. Chem. Phys. Lett. 72, 87–89 (1980)

    Article  Google Scholar 

  25. F.N. Sayed, O. Jayakumar, R. Sasikala, R. Kadam, S.R. Bharadwaj, L. Kienle, U. Schürmann, S.r. Kaps, R. Adelung, J. Mittal, Photochemical hydrogen generation using nitrogen-doped TiO2–Pd nanoparticles: facile synthesis and effect of Ti3+ incorporation. J. Phys. Chem. C 116, 12462–12467 (2012)

    Google Scholar 

  26. A. Galinska, J. Walendziewski, Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energy Fuels 19, 1143–1147 (2005)

    Article  Google Scholar 

  27. H. Arakawa, K. Sayama, Solar hydrogen production. Significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts. Catal. Surv. Jpn 4, 75–80 (2000)

    Google Scholar 

  28. T. Chen, Z. Feng, G. Wu, J. Shi, G. Ma, P. Ying, C. Li, Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. J. Phys. Chem. C 111, 8005–8014 (2007)

    Article  Google Scholar 

  29. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013)

    Article  Google Scholar 

  30. T.K. Townsend, N.D. Browning, F.E. Osterloh, Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 6, 7420–7426 (2012)

    Article  Google Scholar 

  31. K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. J. Phys. Chem. C 90, 292–295 (1986)

    Article  Google Scholar 

  32. F. Wagner, G. Somorjai, Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. J. Am. Chem. Soc. 102, 5494–5502 (1980)

    Article  Google Scholar 

  33. M. Shibata, A. Kudo, A. Tanaka, K. Domen, K.-I. Maruya, T. Onishi, Photocatalytic activities of layered titanium compounds and their derivatives for H2 evolution from aqueous methanol solution. Chem. Lett. 16, 1017–1018 (1987)

    Article  Google Scholar 

  34. M.R. Allen, A. Thibert, E.M. Sabio, N.D. Browning, D.S. Larsen, F.E. Osterloh, Evolution of physical and photocatalytic properties in the layered titanates A2Ti4O9 (A = K, H) and in nanosheets derived by chemical exfoliation. Chem. Mater. 22, 1220–1228 (2009)

    Article  Google Scholar 

  35. J.S. Jang, S.H. Choi, D.H. Kim, J.W. Jang, K.S. Lee, J.S. Lee, Enhanced photocatalytic hydrogen production from water−methanol solution by nickel intercalated into titanate nanotube. J. Phys. Chem. C 113, 8990–8996 (2009)

    Article  Google Scholar 

  36. A. Kudo, T. Kondo, Photoluminescent and photocatalytic properties of layered caesiumtitanates, Cs2TinO2n+1 (n = 2, 5, 6). J. Mater. Chem. 7, 777–780 (1997)

    Article  Google Scholar 

  37. J. Xing, W.Q. Fang, H.J. Zhao, H.G. Yang, Inorganic photocatalysts for overall water splitting. Chem. Asian J. 7, 642–657 (2012)

    Article  Google Scholar 

  38. S. Ogura, M. Kohno, K. Sato, Y. Inoue, Photocatalytic activity for water decomposition of RuO 2-combined M2Ti6O13 (M = Na, K, Rb, Cs). Appl. Surf. Sci. 121, 521–524 (1997)

    Article  Google Scholar 

  39. H.G. Kim, D.W. Hwang, S.W. Bae, J.H. Jung, J.S. Lee, Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method. Catal. Lett. 91, 193–198 (2003)

    Article  Google Scholar 

  40. R. Abe, M. Higashi, Z. Zou, K. Sayama, Y. Abe, Photocatalytic water splitting into H2 and O2 over R2Ti2O7 (R = Y, rare earth) with pyrochlore structure. Chem. Lett. 33, 954–955 (2004)

    Article  Google Scholar 

  41. K. Sayama, H. Arakawa, K. Domen, Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A = K, Rb). Catal. Today 28, 175–182 (1996)

    Article  Google Scholar 

  42. X. Chen, T. Yu, X. Fan, H. Zhang, Z. Li, J. Ye, Z. Zou, Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl. Surf. Sci. 253, 8500–8506 (2007)

    Article  Google Scholar 

  43. Y.-H. Pai, S.-Y. Fang, Preparation and characterization of porous Nb2O5 photocatalysts with CuO, NiO and Pt cocatalyst for hydrogen production by light-induced water splitting. J. Power Sources 230, 321–326 (2013)

    Article  Google Scholar 

  44. T. Takata, A. Tanaka, M. Hara, J.N. Kondo, K. Domen, Recent progress of photocatalysts for overall water splitting. Catal. Today 44, 17–26 (1998)

    Article  Google Scholar 

  45. K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K.-i. Maruya, T. Onishi, Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts. J. Chem. Soc. Chem. Commun. 356–357 (1986)

    Google Scholar 

  46. Y. Miseki, H. Kato, A. Kudo, Water splitting into H2 and O2 over Cs2Nb4O11 photocatalyst. Chem. Lett. 34, 54–55 (2005)

    Article  Google Scholar 

  47. H. Kim, D. Hwang, Y. Kim, J. Lee, Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun. 12, 1077–1078 (1999)

    Google Scholar 

  48. K. Maeda, M. Eguchi, W.J. Youngblood, T.E. Mallouk, Calcium niobate nanosheets prepared by the polymerized complex method as catalytic materials for photochemical hydrogen evolution. Chem. Mater. 21, 3611–3617 (2009)

    Article  Google Scholar 

  49. K. Domen, J. Yoshimura, T. Sekine, A. Tanaka, T. Onishi, A novel series of photocatalysts with an ion-exchangeable layered structure of niobate. Catal. Lett. 4, 339–343 (1990)

    Article  Google Scholar 

  50. W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J.N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798–1803 (2003)

    Article  Google Scholar 

  51. Y. Takahara, J.N. Kondo, T. Takata, D. Lu, K. Domen, Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition. Chem. Mater. 13, 1194–1199 (2001)

    Article  Google Scholar 

  52. T. Sreethawong, S. Ngamsinlapasathian, Y. Suzuki, S. Yoshikawa, Nanocrystalline mesoporous Ta2O5-based photocatalysts prepared by surfactant-assisted templating sol–gel process for photocatalytic H2 evolution. J. Mol. Catal. A: Chem. 235, 1–11 (2005)

    Article  Google Scholar 

  53. Y. Noda, B. Lee, K. Domen, J.N. Kondo, Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. Chem. Mater. 20, 5361–5367 (2008)

    Article  Google Scholar 

  54. H. Kato, A. Kudo, New tantalate photocatalysts for water decomposition into H2 and O2. Chem. Phys. Lett. 295, 487–492 (1998)

    Article  Google Scholar 

  55. H. Kato, A. Kudo, Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 105, 4285–4292 (2001)

    Article  Google Scholar 

  56. J. Liu, G. Chen, Z. Li, Z. Zhang, Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K). Int. J. Hydrogen Energy 32, 2269–2272 (2007)

    Article  Google Scholar 

  57. K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010)

    Article  Google Scholar 

  58. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014)

    Article  Google Scholar 

  59. Z.K. Zheng, B.B. Huang, Z.Y. Wang, M. Guo, X.Y. Qin, X.Y. Zhang, P. Wang, Y. Dai, Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J. Phys. Chem. C 113, 14448–14453 (2009)

    Article  Google Scholar 

  60. F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013)

    Article  Google Scholar 

  61. Kondo, J., Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 3, 357–358 (1998)

    Google Scholar 

  62. S. Yusuf, F. Jiao, Effect of the support on the photocatalytic water oxidation activity of cobalt oxide nanoclusters. ACS Catal. 2, 2753–2760 (2012)

    Article  Google Scholar 

  63. X.H. Deng, H. Tuysuz, Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges. Acs Catal. 4, 3701–3714 (2014)

    Article  Google Scholar 

  64. N. Zhang, J. Shi, S.S. Mao, L. Guo, Co3O4 quantum dots: reverse micelle synthesis and visible-light-driven photocatalytic overall water splitting. Chem. Commun. 50, 2002–2004 (2014)

    Article  Google Scholar 

  65. L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang, Y. Li, X. Lu, D. Wei, G. Feng, Q. Yu, X. Cai, J. Zhao, Z. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, J. Bao, Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69–73 (2014)

    Article  Google Scholar 

  66. B. Girginer, G. Galli, E. Chiellini, N. Bicak, Preparation of stable CdS nanoparticles in aqueous medium and their hydrogen generation efficiencies in photolysis of water. Int. J. Hydrogen Energy 34, 1176–1184 (2009)

    Article  Google Scholar 

  67. D. Jing, L. Guo, A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure. J. Phys. Chem. B 110, 11139–11145 (2006)

    Article  Google Scholar 

  68. Y. Xu, W. Zhao, R. Xu, Y. Shi, B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 49, 9803–9805 (2013)

    Article  Google Scholar 

  69. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  Google Scholar 

  70. J.S. Jang, S.M. Ji, S.W. Bae, H.C. Son, J.S. Lee, Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ ≥ 420 nm). J. Photochem. Photobiol. A Chem. 188, 112–119 (2007)

    Article  Google Scholar 

  71. H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. Castro Neto, J. Martin, S. Adam, B. Özyilmaz, Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14, 1909–1913 (2014)

    Article  Google Scholar 

  72. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)

    Article  Google Scholar 

  73. M. Chhowalla, Z. Liu, H. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 44, 2584–2586 (2015)

    Article  Google Scholar 

  74. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)

    Article  Google Scholar 

  75. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)

    Article  Google Scholar 

  76. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2012)

    Article  Google Scholar 

  77. H. Shi, H. Pan, Y.-W. Zhang, B.I. Yakobson, Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 155304(1–8) (2013)

    Google Scholar 

  78. H.L. Zhuang, R.G. Hennig, Single-layer group-III monochalcogenide photocatalysts for water splitting. Chem. Mater. 25, 3232–3238 (2013)

    Article  Google Scholar 

  79. K. Maeda, K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007)

    Article  Google Scholar 

  80. A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002)

    Article  Google Scholar 

  81. T. Takata, G. Hitoki, J. Kondo, M. Hara, H. Kobayashi, K. Domen, Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res. Chem. Intermed. 33, 13–25 (2007)

    Article  Google Scholar 

  82. J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Y. Inoue, RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J. Am. Chem. Soc. 127, 4150–4151 (2005)

    Article  Google Scholar 

  83. G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem. Commun. 16, 1698–1699 (2002)

    Google Scholar 

  84. J. Zhu, M. Zäch, Nanostructured materials for photocatalytic hydrogen production. Curr. Opin. Colloid Interface Sci. 14, 260–269 (2009)

    Article  Google Scholar 

  85. G. Hitoki, A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, K. Domen, Ta3N5 as a novel visible light-driven photocatalyst (LAMBDA < 600 nm). Chem. Lett. 7, 736–737 (2002)

    Google Scholar 

  86. K. Maeda, K. Domen, Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light. Chem. Mater. 22, 612–623 (2009)

    Google Scholar 

  87. K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286–8287 (2005)

    Article  Google Scholar 

  88. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water. Nature 440, 295–295 (2006)

    Article  Google Scholar 

  89. M.G. Kibria, F.A. Chowdhury, S. Zhao, B. AlOtaibi, M.L. Trudeau, H. Guo, Z. Mi, Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 6797 (2015)

    Article  Google Scholar 

  90. T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H.S. Teng, Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20, 2255–2262 (2010)

    Article  Google Scholar 

  91. T.F. Yeh, C.Y. Teng, S.J. Chen, H. Teng, Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 26, 3297–3303 (2014)

    Article  Google Scholar 

  92. J. Zhu, P. Xiao, H. Li, S.A. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 6, 16449–16465 (2014)

    Article  Google Scholar 

  93. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  Google Scholar 

  94. Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu, H.M. Cheng, An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 27, 4572–4577 (2015)

    Article  Google Scholar 

  95. J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015)

    Article  Google Scholar 

  96. C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye, S. Lin, M. Antonietti, X. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015).

    Article  Google Scholar 

  97. P. Zhang, T. Wang, J. Gong, Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27, 5328–5342 (2015)

    Article  Google Scholar 

  98. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014)

    Article  Google Scholar 

  99. J. Li, S.K. Cushing, F. Meng, T.R. Senty, A.D. Bristow, N. Wu, Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photon. 9, 601–607 (2015)

    Article  Google Scholar 

  100. S.K. Cushing, J. Li, J. Bright, B.T. Yost, P. Zheng, A.D. Bristow, N. Wu, Controlling plasmon-induced resonance energy transfer and hot electron injection processes in Metal@TiO2 core–shell nanoparticles. J. Phys. Chem. C 119, 16239–16244 (2015)

    Article  Google Scholar 

  101. S.K. Cushing, N. Wu, Plasmon-enhanced solar energy harvesting. Interface 22, 63–67 (2013)

    Google Scholar 

  102. F. Meng, S.K. Cushing, J. Li, S. Hao, N. Wu, Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal. 5, 1949–1955 (2015)

    Article  Google Scholar 

  103. J. Li, S.K. Cushing, P. Zheng, T. Senty, F. Meng, A.D. Bristow, A. Manivannan, N. Wu, Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 136, 8438–8449 (2014)

    Article  Google Scholar 

  104. J. Li, S.K. Cushing, P. Zheng, F. Meng, D. Chu, N. Wu, Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4, 2651 (2013).

    Google Scholar 

  105. S.C. Warren, E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133–5146 (2012)

    Article  Google Scholar 

  106. S. Zhang, B. Peng, S. Yang, H. Wang, H. Yu, Y. Fang, F. Peng, Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light. Int. J. Hydrogen Energy 40, 303–310 (2015)

    Article  Google Scholar 

  107. A.O. Govorov, H. Zhang, Y.K. Gun’ko, Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 117, 16616–16631 (2013)

    Article  Google Scholar 

  108. X. Zhang, Y.L. Chen, R.-S. Liu, D.P. Tsai, Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013)

    Article  Google Scholar 

  109. J. Bao, Recent developments in photocatalytic solar water splitting. Mater. Today 17, 208–209 (2014)

    Article  Google Scholar 

  110. S. Mubeen, J. Lee, N. Singh, S. Kramer, G.D. Stucky, M. Moskovits, An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Jiming Bao acknowledges support from the Robert A Welch Foundation (E-1728). Zhiming Wang acknowledges financial support from 111 project (No. B13042). Zhenhuan Zhao acknowledges the financial support from National Science Foundation for Post-doctoral Scientists of China (2015M582538).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Wang or Jiming Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, Z., Wang, Z., Bao, J. (2016). Nanomaterials for Hydrogen Generation from Solar Water Splitting. In: Li, Q. (eds) Nanomaterials for Sustainable Energy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32023-6_12

Download citation

Publish with us

Policies and ethics