Skip to main content

Groundwater and Surface Water Interactions in Relation to Natural and Anthropogenic Environmental Changes

  • Chapter
  • First Online:
Book cover Emerging Issues in Groundwater Resources

Part of the book series: Advances in Water Security ((AWS))

Abstract

Groundwater and surface water interaction is an essential component of the hydrological cycle. The hydraulic connectivity and exchange of water between surface water (e.g. rivers, lakes, wetlands) and underlying aquifers provide many ecosystem services that sustain human and ecological well-being. Climate change, increased population, and industrial growth have resulted in substantial environmental (e.g. land use and land cover, climate, groundwater) changes across the globe. As a result, decline in groundwater levels, drying of streams, shrinking lakes, wetlands, and estuaries have been observed across the world. This generates concerns about the effects of such environmental changes on groundwater and surface water interactions, and on the quality and quantity of water resources. This chapter presents an overview of groundwater and surface water interactions, pressing environmental change issues centered on natural and anthropogenic environmental changes, and available management tools that quantify the integrated groundwater and surface water flow processes. This chapter also briefly discusses exciting research opportunities enabled by satellite remote sensing. We close in with a discussion of future management challenges and strategies for sustainable use of groundwater and surface water resources. One outcome of this chapter is to provide resource managers, researchers, consultant groups, and government agencies basic understanding of the types, mechanism, and effects of natural and anthropogenic landuse changes on groundwater and surface water interactions, and available management tools for studying groundwater and surface water interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams HD, Luce CH, Breshears DD, Allen CD, Weiler M, Hale VC, Huxman TE (2012) Ecohydrological consequences of drought‐and infestation‐triggered tree die‐off: insights and hypotheses. Ecohydrology 5(2):145–159

    Article  Google Scholar 

  • Adams M, Smith PL, Yang X (2014) Assessing the effects of groundwater extraction on coastal groundwater-dependent ecosystems using satellite imagery. Mar Freshw Res 66(3):226–232, http://dx.doi.org/10.1071/MF14010

    Article  Google Scholar 

  • Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5(12):853–861

    Article  CAS  Google Scholar 

  • Ala-aho P, Rossi PM, Isokangas E, Kløve B (2015) Fully integrated surface–subsurface flow modelling of groundwater–lake interaction in an esker aquifer: model verification with stable isotopes and airborne thermal imaging. J Hydrol 522:391–406

    Article  Google Scholar 

  • Alencar A, Nepstad D, Diaz MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact 10(6):1–17

    Article  Google Scholar 

  • Ali M, Nussbaumer R, Ireson A, Keim D (2015) Modelling of seasonal dynamics of Wetland-Groundwater flow interaction in the Canadian Prairies Geophysical Research Abstracts. vol 17, EGU2015-3072-1

    Google Scholar 

  • Alley WM, Reilly TE, Franke OL (1999) Effects of ground-water development on ground-water flow to and from surface-water bodies. US Geological Survey Circular, 1186

    Google Scholar 

  • Anderegg WR, Kane JM, Anderegg LD (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chang 3(1):30–36

    Article  Google Scholar 

  • Andersen H, Pedersen M, Jorgensen O, Kronvang B (2001) Analysis of the hydrology and flow of nitrogen in 17 Danish catchments. Water Sci Technol 44(7):63–68

    CAS  Google Scholar 

  • Anderson MP (2005) Heat as a ground water tracer. Groundwater 43(6):951–968

    Article  CAS  Google Scholar 

  • AquaResource Inc (2011) Integrated surface and groundwater model review and technical guide for The Ontario Ministry of Natural Resources. http://www.waterbudget.ca/system/files/publications/2011_AquaResource_IntegratedModellingGuide.pdf

  • Ashby SF, Falgout RD (1996) A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl Sci Eng 124(1):145–159

    CAS  Google Scholar 

  • Barlow PM, Leake SA (2012) Streamflow depletion by wells: understanding and managing the effects of groundwater pumping on streamflow. US Geological Survey, Reston, p 95

    Google Scholar 

  • Barlow PM, Reichard EG (2010) Saltwater intrusion in coastal regions of North America. Hydrogeol J 18(1):247–260

    Article  CAS  Google Scholar 

  • Barron OV, Donn MJ, Barr AD (2013) Urbanisation and shallow groundwater: predicting changes in catchment hydrological responses. Water Resour Manag 27(1):95–115

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 p

    Google Scholar 

  • Bearup LA, Maxwell RM, Clow DW, McCray JE (2014) Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nat Clim Chang 4(6):481–486

    Article  Google Scholar 

  • Beckers J, Smerdon B, Wilson M (2009) Review of hydrologic models for forest management and climate change applications in British Columbia and Alberta. Forrex Forum for Research and Extension in Natural Resources, Kamloops, BC Forrex Series 25. www.forrex.org/publications/forrexseries/fs25.pdf

  • Bertrand G, Siergieiev D, Ala-Aho P, Rossi PM (2014) Environmental tracers and indicators bringing together groundwater, surface water and groundwater-dependent ecosystems: importance of scale in choosing relevant tools. Environ Earth Sci 72(3):813–827

    Article  Google Scholar 

  • Bhaskar AS, Welty C (2015) Analysis of subsurface storage and streamflow generation in urban watersheds. Water Resour Res 51(3):1493–1513

    Article  Google Scholar 

  • Blöschl G, Ardoin‐Bardin S, Bonell M, Dorninger M, Goodrich D, Gutknecht D, Szolgay J (2007) At what scales do climate variability and land cover change impact on flooding and low flows? Hydrol Process 21(9):1241–1247

    Article  Google Scholar 

  • Bond NR, Lake PS, Arthington AH (2008) The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600(1):3–16

    Article  Google Scholar 

  • Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Groundwater 50(2):170–176

    Article  CAS  Google Scholar 

  • Brunner P, Simmons CT, Cook PG, Therrien R (2010) Modeling surface water-groundwater Interaction with MODFLOW: some considerations. Groundwater 48(2):174–180

    Article  CAS  Google Scholar 

  • Buffington JM, Tonina D (2009) Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geography Compass 3(3):1038–1062

    Article  Google Scholar 

  • Bullock A, Acreman M (2003) The role of wetlands in the hydrological cycle. Hydrol Earth Syst Sci Discuss 7(3):358–389

    Article  Google Scholar 

  • Burns DA, Murdoch PS, Lawrence GB, Michel RL (1998) Effect of groundwater springs on NO3 concentrations during summer in Catskill Mountain streams. Water Resour Res 34(8):1987–1996

    Article  CAS  Google Scholar 

  • Calderhead AI, Therrien R, Rivera A, Martel R, Garfias J (2011) Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Adv Water Resour 34(1):83–97

    Article  Google Scholar 

  • Cardenas MB (2015) Hyporheic zone hydrologic science: a historical account of its emergence and a prospectus. Water Resour Res 51(5):3601–3616

    Article  Google Scholar 

  • Carrie R, Dobson M, Barlow J (2015) The influence of geology and season on macroinvertebrates in Belizean streams: implications for tropical bioassessment. Freshwater Sci 34(2):648–662

    Article  Google Scholar 

  • Caschetto M, Barbieri M, Galassi DM, Mastrorillo L, Rusi S, Stoch F et al (2014) Human alteration of groundwater–surface water interactions (Sagittario River, Central Italy): implication for flow regime, contaminant fate and invertebrate response. Environ Earth Sci 71(4):1791–1807

    Article  Google Scholar 

  • Cavaleri MA, Sack L (2010) Comparative water use of native and invasive plants at multiple scales: a global meta-analysis. Ecology 91(9):2705–2715

    Article  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011a) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    Article  CAS  Google Scholar 

  • Chen J, Sudicky EA, Gula J, Peltier WR, Park Y, Ross M (2011b). Impact of climate change on Canadian surface water and groundwater resources: a continental-scale hydrologic modelling study using multiple high-resolution RCM projections. In AGU Fall Meeting Abstracts (vol 1, p 0853

    Google Scholar 

  • Cohen MJ, Kurz MJ, Heffernan JB, Martin JB, Douglass RL, Foster CR, Thomas RG (2013) Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecol Monogr 83:155–176

    Article  Google Scholar 

  • Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44(4):W00D10

    Article  CAS  Google Scholar 

  • Coscia I, Greenhalgh SA, Linde N, Doetsch J, Marescot L, Günther T, Vogt T, Green AG (2011) 3D crosshole ERT for aquifer characterization and monitoring of infiltrating river water. Geophysics 76(2):G49–G59

    Article  Google Scholar 

  • Coscia I, Linde N, Greenhalgh S, Vogt T, Green A (2012) Estimating travel times and groundwater flow patterns using 3D time-lapse crosshole ERT imaging of electrical resistivity fluctuations induced by infiltrating river water. Geophysics 77(4):E239–E250

    Article  Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I et al (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7(4):357–373

    Article  Google Scholar 

  • Dahl TE (2011). Status and trends of wetlands in the conterminous United States 2004 to 2009. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC 108 pp. http://www.fws.gov/wetlands/Status-And-Trends-2009/index.html

  • Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res 65(10):934–941

    Article  Google Scholar 

  • Dhakal AS, Sidle RC (2004) Pore water pressure assessment in a forest watershed: Simulations and distributed field measurements related to forest practices. Water Resour Res 40, W02405, doi:10.1029/2003WR002017

  • Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50(7):5698–5720

    Article  Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40(12):3031–3035

    Article  CAS  Google Scholar 

  • Dragoni W, Sukhija BS (2008) Climate change and groundwater: a short review. Geol Soc Lond Spec Publ 288(1):1–12

    Article  Google Scholar 

  • Earman S, Dettinger M (2011) Potential impacts of climate change on groundwater resources-a global review. J Water Clim Change 2(4):213–229

    Article  Google Scholar 

  • Eaton JG, Scheller RM (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnol Oceanogr 41(5):1109–1115

    Article  Google Scholar 

  • Ellison D, Futter MN, Bishop K (2012) On the forest cover–water yield debate: from demand- to supply-side thinking. Glob Chang Biol 18(3):806–820

    Article  Google Scholar 

  • Engelbrecht BM, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447(7140):80–82

    Article  CAS  Google Scholar 

  • Essaid HI, Hill BR (2014) Watershed-scale modeling of streamflow change in incised montane meadows. Water Resour Res 50:2657–2678. doi:10.1002/2013WR014420

    Article  Google Scholar 

  • Falke JA, Fausch KD, Magelky R, Aldred A, Durnford DS, Riley LK, Oad R (2011) The role of groundwater pumping and drought in shaping ecological futures for stream fishes in a dryland river basin of the western Great Plains, USA. Ecohydrology 4(5):682–697

    Article  Google Scholar 

  • Fan Y (2015) Groundwater in the earth’s critical zone—relevance to large-scale patterns and processes. Water Resour Res. 50 yr Anniversary Special Issue. doi:10.1002/2015WR017037

    Google Scholar 

  • Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339(6122):940–943. doi:10.1126/science.1229881

    Article  CAS  Google Scholar 

  • FAO (2010) Forest Resources Assessment 2010. http://www.fao.org/forestry/fra/fra2010/en/. Accessed 04 Mar 2015

  • Fendeková M, Fendek M (2012) Groundwater drought in the Nitra river basin-identification and classification. J Hydrology Hydromech 60(3):185–193

    Article  Google Scholar 

  • Ferguson IM, Maxwell RM (2010) Role of groundwater in watershed response and land surface feedbacks under climate change. Water Resour Res 46(10):W00F02

    Article  Google Scholar 

  • Ferguson IM, Maxwell RM (2012) Human impacts on terrestrial hydrology: climate change versus pumping and irrigation. Environ Res Lett 7(4):044022

    Article  Google Scholar 

  • Foster SB, Allen D M (2015) Groundwater—surface water interactions in a mountain-to-coast watershed: effects of climate change and human stressors. Advances in Meteorology. 1–22. ArticleID 861805

    Google Scholar 

  • Foster S, MacDonald A (2014) The ‘water security’ dialogue: why it needs to be better informed about groundwater. Hydrogeol J 22(7):1489–1492

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, p 604

    Google Scholar 

  • Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Woodward FI (2014) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci 111(9):3280–3285

    Article  CAS  Google Scholar 

  • Gaeta JW, Sass GG, Carpenter SR (2014) Drought-driven lake level decline: effects on coarse woody habitat and fishes. Can J Fish Aquat Sci 71(2):315–325

    Article  CAS  Google Scholar 

  • Gleeson T, Wada Y (2013) Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint. Environ Res Lett 8(4):044010

    Article  Google Scholar 

  • Gleeson T, Smith L, Moosdorf N, Hartmann J, Dürr HH, Manning AH et al (2011) Mapping permeability over the surface of the Earth. Geophys Res Lett 38(2):L02401

    Article  Google Scholar 

  • Gleeson T, Wada Y, Bierkens MF, van Beek LP (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488(7410):197–200

    Article  CAS  Google Scholar 

  • Gordon NB, McMahon TA, Finlayson BL (1992) Stream hydrology: an introduction for ecologists. Wiley, Chichester

    Google Scholar 

  • Gordon DR (1998) Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol Appl 8(4):975–989

    Article  Google Scholar 

  • Gorelick SM, Zheng C (2015) Global change and the groundwater management challenge. Water Resour Res 51:3031–3051. doi:10.1002/2014WR016825

    Article  Google Scholar 

  • Goulden M, Bales R (2014) Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc Natl Acad Sci U S A 111(39):14071–14075

    Article  CAS  Google Scholar 

  • Graham N, Refsgaard A (2001) MIKE SHE: a distributed, physically based modeling system for surface water/groundwater interactions. MODFLOW (pp 321–327)

    Google Scholar 

  • Graham DN, Butts MB (2005) Flexible, integrated watershed modelling with MIKE SHE. In: Singh V, Frevert D (eds) Watershed models. CRC Press, Boca Raton, pp 245–272

    Google Scholar 

  • Grant G (2007) Running dry: where will the west get its water? U.S. Forest Service Science Findings No. 97. http://www.fs.fed.us/pnw/sciencef/scifi97.pdf. Accessed 04 Mar 2015

  • Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM et al (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405(3):532–560

    Article  Google Scholar 

  • Griebler C, Avramov M (2015) Groundwater ecosystem services: a review. Freshwater Sci 34(1):355–367

    Article  Google Scholar 

  • Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M, Hanasaki N et al (2014) Global water resources affected by human interventions and climate change. Proc Natl Acad Sci 111(9):3251–3256

    Article  CAS  Google Scholar 

  • Halford KJ, Plume RW (2011) Potential effects of groundwater pumping on water levels, phreatophytes, and spring discharges in Spring and Snake Valleys, White Pine County, Nevada, and adjacent areas in Nevada and Utah. U. S. Geological Survey

    Google Scholar 

  • Han B, Endreny TA (2014) Comparing MODFLOW simulation options for predicting intra‐meander flux. Hydrol Process 28(11):3824–3832

    Article  Google Scholar 

  • Hancock PJ (2002) Human impacts on the stream–groundwater exchange zone. Environ Manage 29(6):763–781

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    Article  CAS  Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, the U.S. Geological Survey modular ground-water model-the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16

    Google Scholar 

  • Hardison EC, O’Driscoll MA, DeLoatch JP, Howard RJ, Brinson MM (2009) Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. J Am Water Resour Assoc 45(4):1032–1046

    Article  Google Scholar 

  • Harr RD (1976) Hydrology of small forest streams in western Oregon. USDA Forest Service General Technical Report PNW-55

    Google Scholar 

  • Harvey JW, Wagner BJ (2000) Quantifying hydrologic interactions between streams and their subsurface hyporheic zones. In: Jones JA, Mulholland PJ (eds) Streams and groundwaters. Academic, New York, pp 3–44

    Chapter  Google Scholar 

  • Hassan ST, Lubczynski MW, Niswonger RG, Su Z (2014) Surface–groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach. J Hydrol 517:390–410

    Article  Google Scholar 

  • Heidbüchel I (2007) Recharge processes in ephemeral streams derived from a coupled stream flow routing/groundwater model—application to the Lower Kuiseb (Namibia). Doctoral dissertation, Thesis, Freiburg University

    Google Scholar 

  • Henderson R, Day-Lewis F, Abarca E, Harvey C, Karam H, Liu L, Lane J (2010) Marine electrical resistivity imaging of submarine groundwater discharge: Sensitivity analysis and application in Waquoit Bay, Massachusetts, USA. Hydrogeol J 18:173–185. doi:10.1007/s10040-009-0498-z

    Article  CAS  Google Scholar 

  • Hewlett JD, Hibbert AR (1967) Factors affecting the response of small watersheds to precipitation in humid areas. In: Sopper WE, Lull HW (eds) Forest hydrology. Pergamon Press, New York, pp 275–290

    Google Scholar 

  • Holman IP, Allen DM, Cuthbert MO, Goderniaux P (2012) Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol J 20(1):1–4

    Article  Google Scholar 

  • Hunt RJ, Walker JF, Selbig WR, Westenbroek SM, Regan RS (2013) Simulation of climatechange effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin. US Geological Survey Scientific Investigations Report, 5159, 118

    Google Scholar 

  • Huntington JL, Niswonger RG (2012) Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: an integrated modeling approach. Water Resour Res 48:W11524. doi:10.1029/2012WR012319

    Article  Google Scholar 

  • Huntington JL, Niswonger RG, Rajagopal S, Zhang Y, Gardner M, Morton CG, Reeves DM, McGraw D, Pohll GM (2013) Integrated hydrologic modeling of Lake Tahoe and Martis Valley mountain block and alluvial systems, Nevada and California, Golden, CO, MODFLOW and More 2013 Conference Proceedings, 5 pp

    Google Scholar 

  • Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58(1):157–170

    Google Scholar 

  • Jaeger KL, Olden JD, Pelland NA (2014) Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc Natl Acad Sci 111(38):13894–13899

    Article  CAS  Google Scholar 

  • Jefferson A, Grant G, Rose T (2006) Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades. Water Resour Res 42:W12411. doi:10.1029/2005WR004812

    Article  Google Scholar 

  • Jefferson A, Grant GE, Lewis SL (2007) A river runs underneath it: geological control of spring and channel systems and management implications. Cascade Range, Oregon. US Forest Service Pacific Northwest Research Station General Technical Report PNW-GTR (689, Part 2), pp 391–400

    Google Scholar 

  • Jefferson A, Nolin A, Lewis S, Tague C (2008) Hydrogeologic controls on streamflow sensitivity to climate variation. Hydrol Process 22(22):4371–4385

    Article  Google Scholar 

  • Jiang X, Rauscher SA, Ringler TD, Lawrence DM, Williams AP, Allen CD et al (2013) Projected future changes in vegetation in western North America in the twenty-first century. J Climate 26(11):3671–3687

    Article  Google Scholar 

  • Jobson HE, Harbaugh AW (1999) Modifications to the diffusion analogy surface-water flow model (DAFLOW) for coupling to the modular finite-difference ground-water flow model (MODFLOW) (No. 99-217). US Dept. of the Interior, US Geological Survey; Federal Center

    Google Scholar 

  • Jolly ID, McEwan KL, Holland KL (2008) A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology 1:43–58

    Article  CAS  Google Scholar 

  • Jones JP, Sudicky EA, Brookfield AE, Park YJ (2006) An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow. Water Resour Res 42(2):W02407

    Article  CAS  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater—surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887

    Article  CAS  Google Scholar 

  • Kelly A, Goulden M (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci U S A 105(33):11823–11826

    Article  CAS  Google Scholar 

  • Khan MR, Voss CI, Yu W, Michael HA (2014) Water resources management in the Ganges basin: a comparison of three strategies for conjunctive use of groundwater and surface water. Water Resour Manag 28(5):1235–1250

    Article  Google Scholar 

  • King AC, Raiber M, Cox ME (2014) Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer–stream connectivity during drought and flood: Cressbrook Creek, southeast Queensland, Australia. Hydrogeol J 22(2):481–500

    Article  CAS  Google Scholar 

  • Kløve B, Ala-aho P, Bertrand G, Boukalova Z, Ertürk A, Goldscheider N, Widerlund A (2011a) Groundwater dependent ecosystems. Part I: hydroecological status and trends. Environ Sci Pol 14(7):770–781

    Article  Google Scholar 

  • Kløve B, Allan A, Bertrand G, Druzynska E, Ertürk A, Goldscheider N et al (2011b) Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ Sci Pol 14(7):782–793

    Article  Google Scholar 

  • Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kværner J et al (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266

    Article  Google Scholar 

  • Konrad CP (2003) Effects of urban development on floods. U.S. Geological Survey Fact Sheet 076-03

    Google Scholar 

  • Konikov E, Likhodedova O (2011) Global climate change and sea-level fluctuations in the Black and Caspian Seas over the past 200 years. Geol Soc Am Special Papers 473:59–69

    Google Scholar 

  • Krause S, Bronstert A (2005) An advanced approach for catchment delineation and water balance modelling within wetlands and floodplains. Adv Geosci 5(5):1–5

    Google Scholar 

  • Krause S, Bronstert A (2007) Water balance simulations and groundwater–surface water-interactions in a mesoscale low-land river catchment. Hydrol Process. doi:10.1002/hyp.6182

    Google Scholar 

  • Krause S, Jacobs J, Bronstert A (2007) Modelling the impacts of land-use and drainage density on the water balance of a lowland–floodplain landscape in northeast Germany. Ecol Model 200(3-4):475–492. doi:10.1016/j.ecolmodel.2006.08.015

    Article  Google Scholar 

  • Kristensen KJ, Jensen SE (1975) A model for estimating actual evapotranspiration from potential transpiration. Nord Hydrol 6:170–188

    Google Scholar 

  • Krupa SL, Belanger TV, Heck HH, Brock JT, Jones BJ. Krupaseep-the next generation seepage meter, International Coastal Symposium (ICS 98), Special Issue 26, 210–213,1998

    Google Scholar 

  • Kummu M, Ward PJ, de Moel H, Varis O (2010) Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ Res Lett 5(3):034006

    Article  Google Scholar 

  • Kurylyk BL, MacQuarrie KTB, Caissie D, McKenzie JM (2014) Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature projections. Hydrol Earth Syst Sci Discuss 11(11):12573–12626

    Article  Google Scholar 

  • Leavesley GH, Lichty RW, Troutman BM, Saindon LG (1983) Precipitation-runoff modeling system—user’s manual: U.S. Geological Survey Water-Resources Investigations Report 83-4238, 207 p

    Google Scholar 

  • Leavesley GH, Markstrom SL, Viger RJ, Hay LE (2005) USGS modular modeling system (MMS)—precipitation-runoff modeling system (PRMS) MMS-PRMS. In: Singh V, Frevert D (eds) Watershed models. CRC Press, Boca Raton, pp 159–177

    Chapter  Google Scholar 

  • Lee DR (1977) Device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22(1):140–147

    Article  CAS  Google Scholar 

  • Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003) Climate change effects on vegetation distribution, carbon, and fire in California. Ecol Appl 13(6):1667–1681

    Article  Google Scholar 

  • Levine JM, Vila M, Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond B Biol Sci 270(1517):775–781

    Article  Google Scholar 

  • Li Q, Unger AJA, Sudicky EA, Kassenaar D, Wexler EJ, Shikaze S (2008) Simulating the multi-seasonal response of a large-scale watershed with a 3D physically-based hydrologic model. J Hydrol 357(3):317–336

    Article  Google Scholar 

  • Lischeid G, Kolb A, Alewell C (2002) Apparent translatory flow in groundwater recharge and runoff generation. J Hydrol 265(1):195–211

    Article  CAS  Google Scholar 

  • Llamas MR (1988) Conflicts between wetland conservation and groundwater exploitation: two case histories in Spain. Environ Geol Water Sci 11(3):241–251

    Article  Google Scholar 

  • Loinaz MC, Davidsen HK, Butts M, Bauer-Gottwein P (2013) Integrated flow and temperature modeling at the catchment scale. J Hydrol 495:238–251

    Article  Google Scholar 

  • Lu J, Sun G, McNulty SG, Amatya DM (2003) Modeling actual evapotranspiration from forested watershed across the Southeastern United States. J Am Water Resour Assoc 39(40):887–896

    Google Scholar 

  • Lundquist JD, Dickerson‐Lange SE, Lutz JA, Cristea NC (2013) Lower forest density enhances snow retention in regions with warmer winters: a global framework developed from plot-scale observations and modeling. Water Resour Res 49(10):6356–6370

    Article  Google Scholar 

  • Maidment DR (1993). Hydrology. In: Maidment DR (ed) Chap. 1 in Handbook in hydrology, McGraw-Hill, pp 1–1 to 1–15, and Appendix A, pp. A-1 to A-11

    Google Scholar 

  • Manga M (1996) Hydrology of spring-dominated streams in the Oregon Cascades. Water Resour Res 32(8):2435–2439

    Article  Google Scholar 

  • Markstrom SL, Niswonger RG, Regan RS, Prudic DE, Barlow PM (2008) GSFLOW-coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005): U.S. Geological Survey Techniques and Methods 6-D1, 240 p

    Google Scholar 

  • Mateus C, Tullos DD, Surfleet CG (2015) Hydrologic sensitivity to climate and land use changes in the Santiam River Basin, Oregon. J Am Water Resour Assoc 51(2):400–420

    Article  Google Scholar 

  • Maxwell RM, Miller NL (2005) Development of a coupled land surface and groundwater model. J Hydrometeorol 6(3):233–247

    Article  Google Scholar 

  • Maxwell RM, Putti M, Meyerhoff S, Delfs JO, Ferguson IM, Ivanov V, Sulis M (2014) Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour Res 50(2):1531–1549

    Article  Google Scholar 

  • Maxwell RM, Condon LE, Kollet SJ (2015) A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci Model Dev 8:923–937

    Article  Google Scholar 

  • Mejia A, Hubner MN, Sánchez ER, Doria M (2012) The United Nations World water development report–N° 4–water and sustainability (a review of targets, tools and regional cases) (vol 3). UNESCO

    Google Scholar 

  • Mirus BB, Ebel BA, Loague K, Wemple BC (2007) Simulated effect of a forest road on near-surface hydrologic response: Redux. Earth Surf Process Landf 32(1):126–142

    Article  Google Scholar 

  • Moore R, Wondzell SM (2005) Physical hydrology and the effects of forest harvesting in the Pacific Northwest: a review. J Am Water Resour Assoc 41(4):763–784

    Article  Google Scholar 

  • Moser B, Temperli C, Schneiter G, Wohlgemuth T (2010) Potential shift in tree species composition after interaction of fire and drought in the Central Alps. Eur J For Res 129(4):625–633

    Article  Google Scholar 

  • Nalesso M (2009) Integrated surface-ground water modeling in wetlands with improved methods to simulate vegetative resistance to flow. FIU Electronic Theses and Dissertations. Paper 122. http://digitalcommons.fiu.edu/etd/122.

  • Neary DG, Ryan KC, DeBano LF (2005) Wildland fire in ecosystems: effects of fire on soils and water. Gen Tech Rep RMRS-GTR-42-vol 4, 250

    Google Scholar 

  • Nicholls RJ (2004) Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob Environ Chang 14(1):69–86

    Article  Google Scholar 

  • Niswonger RG, Prudic DE (2005) Documentation of the streamflow-routing (SFR2) package to include unsaturated flow beneath streams—a modification to SFR1: U.S. Geological Survey Techniques and Methods 6-A13, 50 p

    Google Scholar 

  • Nyquist JE, Freyer PA, Toran L (2008) Stream bottom resistivity tomography to map ground water discharge. Ground Water 46(4):561–569. doi:10.1111/j.1745-6584.2008.00432.x

    Article  CAS  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072

    Article  CAS  Google Scholar 

  • Olivier J, Van Niekerk HJ, Van der Walt IJ (2008) Physical and chemical characteristics of thermal springs in the Waterberg area in Limpopo Province, South Africa. Water SA 34(2):163–174

    CAS  Google Scholar 

  • Onda Y, Dietrich WE, Booker F (2008) Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena 72(1):13–20

    Article  Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10(5):381–402

    Article  Google Scholar 

  • Packman AI, MacKay JS (2003) Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution. Water Resour Res 39(4): ESG 4–1 to 4–9. doi:10.1029/2002WR001432

  • Panday S, Huyakorn PS (2004) A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour 27(4):361–382

    Article  Google Scholar 

  • Partington D, Brunner P, Simmons CT, Therrien R, Werner AD, Dandy GC, Maier HR (2011) A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water–groundwater flow models. Environ Model Software 26(7):886–898

    Article  Google Scholar 

  • Patten DT, Rouse L, Stromberg JC (2008) Isolated spring wetlands in the Great Basin and Mojave Deserts, USA: potential response of vegetation to groundwater withdrawal. Environ Manage 41(3):398–413

    Article  Google Scholar 

  • Paulsen RJ, Smith CF, O’Rourke D, Wong TF (2001) Development and evaluation of an ultrasonic ground water seepage meter. Ground Water 39(6):904–911

    Article  CAS  Google Scholar 

  • Phillips OL, Van der Heijden G, Lewis SL, López‐González G, Aragão LE, Lloyd J et al (2010) Drought–mortality relationships for tropical forests. New Phytol 187(3):631–646

    Article  Google Scholar 

  • Prigent C, Papa F, Aires F, Jimenez C, Rossow WB, Matthews E (2012) Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys Res Lett 39, L08403. doi:10.1029/2012GL051276

    Article  Google Scholar 

  • Proulx RA, Knudson MD, Kirilenko A, VanLooy JA, Zhang X (2013) Significance of surface water in the terrestrial water budget: a case study in the Prairie Coteau using GRACE, GLDAS, Landsat, and groundwater well data. Water Resour Res 49(9):5756–5764

    Article  Google Scholar 

  • Prudic DE (1989) Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model: U.S. Geological Survey Open-File Report 88-729, 113 p

    Google Scholar 

  • Prudic DE, Konikow LF, Banta ER (2004) A new streamflow-routing (SFR1) package to simulate stream-aquifer interaction with MODFLOW-2000: U.S. Geological Survey Open-File Report 2004-1042, p 95

    Google Scholar 

  • Puri S, Aureli A (eds) (2009) Atlas of transboundary aquifers—global maps, regional cooperation and local inventories. UNESCO-IHP ISARM Programme. UNESCO, Paris. [CD only] http://www.isarm.net/publications/324

  • Reddy KR, D’Angelo EM, Harris WG (1999) Biogeochemistry of wetlands. In: Sumner M (ed) Handbook of soil science. CRC Press, Boca Raton, pp G89–G119

    Google Scholar 

  • Robinson DA, Binley A, Crook N, -Lewis FD, Ferré TPA, Grauch VJS, Slater L (2008) Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol Process 22(18):3604–3635

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002

    Article  CAS  Google Scholar 

  • Rosenberry DO, Morin RH (2004) Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage. Ground Water 42(1):68–77

    Article  CAS  Google Scholar 

  • Rossi PM, Ala-aho P, Ronkanen AK, Kløve B (2012) Groundwater–surface water interaction between an esker aquifer and a drained fen. J Hydrol 432:52–60

    Article  Google Scholar 

  • Rulli MC, Rosso R (2005) Modeling catchment erosion after wildfires in the San Gabriel Mountains of southern California. Geophys Res Lett 32(19):L19401

    Article  Google Scholar 

  • Rustad L, Cambell J, Dukes JS, Huntington T, Lambert KF, Mohan J, Rodenhouse N (2012) Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada. USDA Forest Service. General Technical Report NRS-99

    Google Scholar 

  • Safeeq M, Fares A (2012) Hydrologic effect of groundwater development in a small mountainous tropical watershed. J Hydrol 428:51–67

    Article  Google Scholar 

  • Safeeq M, Fares A (2014) Interception losses in three non-native Hawaiian forest stands. Hydrol Process 28(2):237–254

    Article  Google Scholar 

  • Sanford WE, Selnick DL (2013) Estimation of evapotranspiration across the conterminous United States using a regression with climate and land‐cover Data1. J Am Water Resour Assoc 49(1):217–230

    Article  Google Scholar 

  • Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Chang Biol 11(10):1577–1593

    Article  Google Scholar 

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43(3):W03437

    Article  CAS  Google Scholar 

  • Schaffranek RW, Baltzer RA, Goldberg DE (1981) A model for simulation of flow in singular and interconnected channels: U.S. Geological Survey Techniques of Water-Resources Investigations, book 7, chap. 3, 110 p

    Google Scholar 

  • Schalchli U (1992) The clogging of coarse gravel river beds by fine sediment. Hydrobiologia 235(236):189–197

    Article  Google Scholar 

  • Schulla J (1997) Hydrologische Modellierung von Flussgebieten zur Abschätzung von Folgen der Klimaänderung. Züricher Geographische Schriften, Heft 69

    Google Scholar 

  • Scibek J, Allen DM, Cannon AJ, Whitfield PH (2007) Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. J Hydrol 333(2):165–181

    Article  Google Scholar 

  • Scott ML, Shafroth PB, Auble GT (1999) Responses of riparian cottonwoods to alluvial water table declines. Environ Manage 23(3):347–358

    Article  Google Scholar 

  • Scott RL, Huxman TE, Barron‐Gafford GA, Darrel Jenerette G, Young JM, Hamerlynck EP (2014) When vegetation change alters ecosystem water availability. Glob Chang Biol 20(7):2198–2210

    Article  Google Scholar 

  • Sear DA, Armitage PD, Dawson FH (1999) Groundwater dominated rivers. Hydrol Process 13(3):255–276

    Article  Google Scholar 

  • Sebben ML, Werner AD, Liggett JE, Partington D, Simmons CT (2013) On the testing of fully integrated surface–subsurface hydrological models. Hydrol Process 27(8):1276–1285

    Article  Google Scholar 

  • Shi F, Zhao C, Sun D, Peng D, Han M (2012) Conjunctive use of surface and groundwater in central Asia area: a case study of the Tailan River Basin. Stoch Env Res Risk A 26(7):961–970

    Article  Google Scholar 

  • Shiklomanov I (1993) World fresh water resources. In: Peter HG (ed) Water in crisis: a guide to the world's fresh water resources. Oxford University Press, New York

    Google Scholar 

  • Sholkovitz E, Herbold C, Charette M (2003) An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge. Limnol Oceanogr Methods 1(1):16–28

    Article  Google Scholar 

  • Singha K, Day-Lewis FD, Johnson T, Slater LD (2014) Advances in interpretation of subsurface processes with time-lapse electrical imaging. Hydrol Process 29:1549–1576. doi:10.1002/hyp.10280

    Article  Google Scholar 

  • Sklash MG, Farvolden RN (1979) The role of groundwater in storm runoff. Dev Water Sci 12:45–65

    Article  Google Scholar 

  • Smerdon BD, Redding T, Beckers J (2009) An overview of the effects of forest management on groundwater hydrology. J Ecosyst Manage 10(1):22–44

    Google Scholar 

  • Sørensen R, Ring E, Meili M, Högbom L, Seibert J, Grabs T et al (2009) Forest harvest increases runoff most during low flows in two boreal streams. J Human Environ 38(7):357–363

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10(1):52–67

    Article  CAS  Google Scholar 

  • Spanoudaki K, Stamou AI, Nanou-Giannarou A (2009) Development and verification of a 3-D integrated surface water–groundwater model. J Hydrol 375(3):410–427

    Article  Google Scholar 

  • Srivastava V, Graham W, Muñoz-Carpena R, Maxwell RM (2015) Insights on geologic and vegetative controls over hydrologic behavior of a large complex basin–global sensitivity analysis of an integrated parallel hydrologic model. J Hydrol 519:2238–2257

    Article  Google Scholar 

  • Stonestrom DA, Constantz J (eds) (2003) Heat as a tool for studying the movement of ground water near streams (No. 1260). US Dept. of the Interior, US Geological Survey

    Google Scholar 

  • Stromberg JC, Tiller R, Richter B (1996) Effects of groundwater decline on riparian vegetation of semiarid regions: the San Pedro, Arizona. Ecol Appl 6(1):113–131

    Article  Google Scholar 

  • Surfleet CG, Tullos D (2013) Uncertainty in hydrologic modelling for estimating hydrologic response due to climate change (Santiam River, Oregon). Hydrol Process 27(25):3560–3576

    Article  Google Scholar 

  • Swain ED, Wexler EJ (1996) A coupled surface-water and ground-water flow model (MODBRNCH) for simulation of stream- aquifer interaction: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A6, 125 p

    Google Scholar 

  • Swanson FJ (1981) Fire and geomorphic processes. In Mooney HA, Bonnicksen TM, Christensen NL, Lotan JE, Reiners WA (eds) Fire regimes and ecosystem properties. USDA Forest Service General Technical Report WO-26. USDA Forest Service. pp 401–444

    Google Scholar 

  • Tague C, Grant GE (2004) A geological framework for interpreting the low‐flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resour Res 40(4). doi:10.1029/2003WR002629

  • Tague C, Grant GE (2009) Groundwater dynamics mediate low‐flow response to global warming in snowdominated alpine regions. Water Resour Res 45(7)

    Google Scholar 

  • Tague C, Farrell M, Grant G, Lewis S, Rey S (2007) Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon. Hydrol Process 21(24):3288–3300

    Article  Google Scholar 

  • Taniguchi M, Fukuo Y (1993) Continuous measurements of groundwater seepage using an automatic seepage meter. Ground Water 31(4):675–679

    Article  Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y et al (2013) Ground water and climate change. Nat Clim Chang 3(4):322–329

    Article  Google Scholar 

  • Teatini P, Ferronato M, Gambolati G, Gonella M (2006) Groundwater pumping and land subsidence in the Emilia‐Romagna coastland, Italy: modeling the past occurrence and the future trend. Water Resour Res 42(1):W01406

    Article  Google Scholar 

  • The World Bank DataBank (2014) http://databank.worldbank.org/data/home.aspx (Retrieved 21 June 2015)

  • Therrien R, McLaren RG, Sudicky EA, Panday SM (2010) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group, University of Waterloo, Waterloo

    Google Scholar 

  • Thompson JR (2004) Simulation of wetland water-level manipulation using coupled hydrological/hydraulic modeling. Phys Geogr 25(1):39–67

    Article  Google Scholar 

  • Tian Y, Zheng Y, Wu B, Wu X, Liu J, Zheng C (2015) Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environ Model Software 63:170–184

    Article  Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Tonina D, Buffington JM (2009) Hyporheic exchange in mountain rivers I: mechanics and environmental effects. Geogr Compass 3(3):1063–1086

    Article  Google Scholar 

  • Tweed S, Leblanc M, Cartwright I (2009) Groundwater–surface water interaction and the impact of a multi-year drought on lakes conditions in South-East Australia. J Hydrol 379(1):41–53

    Article  Google Scholar 

  • Uchida T, Kosugi KI, Mizuyama T (2002) Effects of pipe flow and bedrock groundwater on runoff generation in a steep headwater catchment in Ashiu, central Japan. Water Resour Res 38(7):24-1–24-14

    Article  Google Scholar 

  • Van der Kamp G, Hayashi M (1998) The groundwater recharge function of small wetlands in the semi-arid northern prairies. Great Plains Res 8:39–56

    Google Scholar 

  • VanderKwaak JE (1999). Numerical Simulation of Flow and Chemical Transport in Integrated Surface-Subsurface Hydrologic Systems, PhD dissertation, University of Waterloo, Waterloo

    Google Scholar 

  • Viviroli D, Weingartner R (2008) Water towers—a global view of the hydrological importance of mountains. In: Wiegandt E (ed) Mountains: sources of water, sources of knowledge, vol 31, Advances in global change research. Springer, New York, pp 15–20

    Chapter  Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    Article  Google Scholar 

  • Voss KA, Famiglietti JS, Lo M, Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49(2):904–914

    Article  Google Scholar 

  • Wada Y, van Beek LP, van Kempen CM, Reckman JW, Vasak S, Bierkens MF (2010) Global depletion of groundwater resources. Geophys Res Lett, 37(20). doi:10.1029/2010GL044571

    Google Scholar 

  • Wada Y, Van Beek LPH, Bierkens MF (2011a) Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol Earth Syst Sci 15(12):3785–3808

    Article  Google Scholar 

  • Wada Y, Van Beek LPH, Viviroli D, Dürr HH, Weingartner R, Bierkens MF (2011b) Global monthly water stress: 2. Water demand and severity of water stress. Water Resour Res 47(7):WO7518

    Article  Google Scholar 

  • Wada Y, Beek LP, Sperna Weiland FC, Chao BF, Wu YH, Bierkens MF (2012) Past and future contribution of global groundwater depletion to sea-level rise. Geophys Res Lett 39(9):L09402

    Article  Google Scholar 

  • Wagner MJ, Bladon KD, Silins U, Williams CH, Martens AM, Boon S et al (2014) Catchment-scale stream temperature response to land disturbance by wildfire governed by surface–subsurface energy exchange and atmospheric controls. J Hydrol 517:328–338

    Article  Google Scholar 

  • Waibel MS, Gannett MW, Chang H, Hulbe CL (2013) Spatial variability of the response to climate change in regional groundwater systems–examples from simulations in the Deschutes Basin, Oregon. J Hydrol 486:187–201

    Article  Google Scholar 

  • Wells WG (1987) The effects of fire on the generation of debris flows in southern California. Rev Eng Geol 7:105–114

    Article  Google Scholar 

  • Wen L, Macdonald R, Morrison T, Hameed T, Saintilan N, Ling J (2013) From hydrodynamic to hydrological modelling: Investigating long-term hydrological regimes of key wetlands in the Macquarie Marshes, a semi-arid lowland floodplain in Australia. J Hydrol 500:45–61

    Article  Google Scholar 

  • Werner AD, Gallagher MR (2006) Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modelling. Hydrogeol J 14(8):1452–1469

    Article  CAS  Google Scholar 

  • Werner AD, Gallagher MR, Weeks SW (2006) Regional-scale, fully coupled modelling of stream–aquifer interaction in a tropical catchment. J Hydrol 328(3):497–510

    Article  Google Scholar 

  • Westbrook CJ, Cooper DJ, Baker BW (2006) Beaver dams and overbank floods influence groundwater–surface water interactions of a Rocky Mountain riparian area. Water Resour Res. 42(6). doi:10.1029/2005WR004560

    Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313(5789):940–943

    Article  CAS  Google Scholar 

  • Williams AP, Allen CD, Millar CI, Swetnam TW, Michaelsen J, Still CJ, Leavitt SW (2010) Forest responses to increasing aridity and warmth in the southwestern United States. Proc Natl Acad Sci 107(50):21289–21294

    Article  CAS  Google Scholar 

  • Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM et al (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang 3(3):292–297

    Article  Google Scholar 

  • Williamson GB, Laurance WF, Oliveira AA, Delamônica P, Gascon C, Lovejoy TE, Pohl L (2001) Amazonian tree mortality during the 1997 El Nino drought. Conserv Biol 14(5):1538–1542

    Article  Google Scholar 

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7(1):28–45

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. U.S. Geological Survey Circular 1139:79

    Google Scholar 

  • Woessner WW (1998) Changing views of stream-groundwater interaction. In: Proceedings of the Join Meeting of the XXVIII Congress of the International Association of the Hydrogeologists and the Annual meeting of the American Institute of Hydrology. American Institute of Hydrology, St. Paul, pp 1–6

    Google Scholar 

  • Woessner WW (2000) Stream and fluvial plain ground-water interactions: re-scaling hydrogeologic thought. Groundwater 38(3):423–429

    Article  CAS  Google Scholar 

  • Wondzell SM, King JG (2003) Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions. For Ecol Manage 178(1):75–87

    Article  Google Scholar 

  • Yan J, Zhang J (2001) Evaluation of the MIKE SHE modeling system. Southern Cooperative Series Bulleting, 398

    Google Scholar 

  • Young C, Wallender W, Schoups G, Fogg G, Hanson B, Harter T et al (2007) Modeling shallow water table evaporation in irrigated regions. Irrig Drain Syst 21(2):119–132

    Article  Google Scholar 

  • Zacharias I, Dimitriou E, Koussouris T (2005) Integrated water management scenarios for wetland protection: application in Trichonis Lake. Environ Model Software 20(2):177–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Safeeq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Safeeq, M., Fares, A. (2016). Groundwater and Surface Water Interactions in Relation to Natural and Anthropogenic Environmental Changes. In: Fares, A. (eds) Emerging Issues in Groundwater Resources. Advances in Water Security. Springer, Cham. https://doi.org/10.1007/978-3-319-32008-3_11

Download citation

Publish with us

Policies and ethics