Skip to main content

Future Directions of FAI Surgery: Diagnosis and Treatment

  • Chapter
  • First Online:
Diagnosis and Management of Femoroacetabular Impingement

Abstract

The field of hip preservation surgery has undergone dramatic growth and development recently, particularly over the last decade. Through the efforts of many researchers, we have a much improved understanding how patients may present in the clinical setting, as well as a more nuanced appreciation of the varied pathology that patients may demonstrate. This increased knowledge base has vastly improved the care that we are able to provide our patients. As much growth as has been observed in the diagnosis and treatment of femoroacetabular impingement (FAI), there is a great deal of ongoing research and development into how best to diagnose and treat this disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clohisy JC, Baca G, Beaulé PE, et al. Descriptive epidemiology of femoroacetabular impingement: a North American cohort of patients undergoing surgery. Am J Sports Med. 2013;41(6):1348–56.

    Article  PubMed  Google Scholar 

  2. Nepple JJ, Vigdorchik JM, Clohisy JC. What is the association between sports participation and the development of proximal femoral cam deformity? A systematic review and meta-analysis. Am J Sports Med. 2015;43(11):2833–40.

    Article  PubMed  Google Scholar 

  3. Reiman MP, Goode AP, Cook CE, Hölmich P, Thorborg K. Diagnostic accuracy of clinical tests for the diagnosis of hip femoroacetabular impingement/labral tear: a systematic review with meta-analysis. Br J Sports Med. 2015;49(12):811.

    Article  CAS  PubMed  Google Scholar 

  4. Lahner M, Mußhoff D, von Schulze Pellengahr C, et al. Is the kinect system suitable for evaluation of the hip joint range of motion and as a screening tool for femoroacetabular impingement (FAI)? Technol Health Care. 2015;23(1):75–81.

    PubMed  Google Scholar 

  5. Ross JR, Tannenbaum EP, Nepple JJ, Kelly BT, Larson CM, Bedi A. Functional acetabular orientation varies between supine and standing radiographs: implications for treatment of femoroacetabular impingement. Clin Orthop Relat Res. 2015;473(4):1267–73.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zaltz I, Kelly BT, Hetsroni I, Bedi A. The crossover sign overestimates acetabular retroversion. Clin Orthop Relat Res. 2013;471(8):2463–70.

    Article  PubMed  Google Scholar 

  7. Harris-Hayes M, Commean PK, Patterson JD, Clohisy JC, Hillen TJ. Bony abnormalities of the hip joint: a new comprehensive, reliable and radiation-free measurement method using magnetic resonance imaging. J Hip Preserv Surg. 2014;1(2):62–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saltybaeva N, Jafari ME, Hupfer M, Kalender WA. Estimates of effective dose for CT scans of the lower extremities. Radiology. 2014;273(1):153–9.

    Article  PubMed  Google Scholar 

  9. Rousseau MA, Brusson A, Lazennec JY. Assessment of the axial rotation of the pelvis with the EOS® imaging system: intra- and inter-observer reproducibility and accuracy study. Eur J Orthop Surg Traumatol. 2014;24(6):891–5.

    Article  PubMed  Google Scholar 

  10. Singer A, Clifford P, Tresley J, Jose J, Subhawong T. Ischiofemoral impingement and the utility of full-range-of-motion magnetic resonance imaging in its detection. Am J Orthop. 2014;43(12):548–51.

    PubMed  Google Scholar 

  11. Milone MT, Bedi A, Poultsides L, Magennis E, Byrd JW, Larson CM, Kelly BT. Novel CT-based three-dimensional software improves the characterization of cam morphology. Clin Orthop Relat Res. 2013;471(8):2484–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Masjedi M, Mandalia R, Aqil A, Cobb J. Validation of the ‘FeMorph’ software in planning cam osteochondroplasty by incorporating labral morphology. Comput Methods Biomech Biomed Engin. 2016;19(1):67–73 doi: 10.1080/10255842.2014.986654.

  13. Dawes AR, Seidenberg PH. Sonography of sports injuries of the hip. Sports Health. 2014;6(6):531–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Larkin B, van Holsbeeck M, Koueiter D, Zaltz I. What is the impingement-free range of motion of the asymptomatic hip in young adult males? Clin Orthop Relat Res. 2015;473(4):1284–8.

    Article  PubMed  Google Scholar 

  15. Mabee M, Dulai S, Thompson RB, Jaremko JL. Reproducibility of acetabular landmarks and a standardized coordinate system obtained from 3D hip ultrasound. Ultrason Imaging. 2015;37(4):267–76.

    Article  PubMed  Google Scholar 

  16. Buck FM, Hodler J, Zanetti M, Dora C, Pfirrmann CW. Ultrasound for the evaluation of femoroacetabular impingement of the cam type. Diagnostic performance of qualitative criteria and alpha angle measurements. Eur Radiol. 2011;21(1):167–75.

    Article  PubMed  Google Scholar 

  17. Azizi HF, Lee SW, Oh-Park M. Ultrasonography of snapping hip syndrome. Am J Phys Med Rehabil. 2015;94(1):e10–1.

    Article  PubMed  Google Scholar 

  18. Whittaker JL, Emery CA. Sonographic measures of the gluteus medius, gluteus minimus, and vastus medialis muscles. J Orthop Sports Phys Ther. 2014;44(8):627–32.

    Article  PubMed  Google Scholar 

  19. Kong A, Van der Vliet A, Zadow S. MRI and US of gluteal tendinopathy in greater trochanteric pain syndrome. Eur Radiol. 2007;17(7):1772–83.

    Article  PubMed  Google Scholar 

  20. Khalil JG, Mott MP, Parsons 3rd TW, Banka TR, van Holsbeeck M. 2011 Mid-America Orthopaedic Association Dallas B. Phemister Physician in Training Award: can musculoskeletal tumors be diagnosed with ultrasound fusion-guided biopsy? Clin Orthop Relat Res. 2012;470(8):2280–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vollman A, Hulen R, Dulchavsky S, Pinchcofsky H, Amponsah D, Jacobsen G, Dulchavsky A, van Holsbeeck M. Educational benefits of fusing magnetic resonance imaging with sonograms. J Clin Ultrasound. 2014;42(5):257–63.

    Article  PubMed  Google Scholar 

  22. Mautner K, Colberg RE, Malanga G, Borg-Stein JP, Harmon KG, Dharamsi AS, Chu S, Homer P. Outcomes after ultrasound-guided platelet-rich plasma injections for chronic tendinopathy: a multicenter, retrospective review. PM R. 2013;5(3):169–75.

    Article  PubMed  Google Scholar 

  23. Ronga M, Angeretti G, Ferraro S, DE Falco G, Genovese EA, Cherubino P. Imaging of articular cartilage: current concepts. Joints. 2014;2(3):137–40.

    PubMed  PubMed Central  Google Scholar 

  24. Lazik A, Körsmeier K, Claßen T, Jäger M, Kamminga M, Kraff O, Lauenstein TC, Theysohn JM, Landgraeber S. 3 Tesla high-resolution and delayed gadolinium enhanced MR imaging of cartilage (dGEMRIC) after autologous chondrocyte transplantation in the hip. J Magn Reson Imaging. 2015;42(3):624–33.

    Article  PubMed  Google Scholar 

  25. Wang L, Regatte RR. T1ρ MRI of human musculoskeletal system. J Magn Reson Imaging. 2015;41(3):586–600.

    Article  PubMed  Google Scholar 

  26. Zbýň S, Brix MO, Juras V, Domayer SE, Walzer SM, Mlynarik V, Apprich S, Buckenmaier K, Windhager R, Trattnig S. Sodium magnetic resonance imaging of ankle joint in cadaver specimens, volunteers, and patients after different cartilage repair techniques at 7 T: initial results. Invest Radiol. 2015;50(4):246–54.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Widhalm HK, Apprich S, Welsch GH, Zbyn S, Sadoghi P, Vekszler G, Hamböck M, Weber M, Hajdu S, Trattnig S. Optimized cartilage visualization using 7-T sodium ((23)Na) imaging after patella dislocation. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1601–9 doi: 10.1007/s00167-014-3455-x. Epub 2014 Nov 28.

  28. Morgan P, Spiridonov S, Goebel R, Nissi M, Frei R, Ellermann J. MR imaging with T2*- mapping for improved acetabular cartilage assessment in FAI-a case report with arthroscopic correlation. Orthop Traumatol Surg Res. 2014;100(8):971–3.

    Article  CAS  PubMed  Google Scholar 

  29. Mak J, Leonard C, Foniok T, Rushforth D, Dunn JF, Krawetz R. Evaluating endogenous repair of focal cartilage defects in C57BL/6 and MRL/MpJ mice using 9.4T magnetic resonance imaging: a pilot study. Magn Reson Imaging. 2015;33(5):690–4.

    Article  CAS  PubMed  Google Scholar 

  30. Sahin M, Calisir C, Omeroglu H, Inan U, Mutlu F, Kaya T. Evaluation of labral pathology and Hip articular cartilage in patients with femoroacetabular impingement (FAI): comparison of multidetector CT arthrography and MR arthrography. Pol J Radiol. 2014;79:374–80.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwartz A, Money K, Spangehl M, Hattrup S, Claridge RJ, Beauchamp C. Office-based rapid prototyping in orthopedic surgery: a novel planning technique and review of the literature. Am J Orthop (Belle Mead NJ). 2015;44(1):19–25.

    Google Scholar 

  32. Niikura T, Sugimoto M, Lee SY, Sakai Y, Nishida K, Kuroda R, Kurosaka M. Tactile surgical navigation system for complex acetabular fracture surgery. Orthopedics. 2014;37(4):237–42.

    Article  PubMed  Google Scholar 

  33. Krych AJ, Griffith TB, Hudgens JL, Kuzma SA, Sierra RJ, Levy BA. Limited therapeutic benefits of intra-articular cortisone injection for patients with femoro-acetabular impingement and labral tear. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):750–5.

    Article  PubMed  Google Scholar 

  34. Ayeni OR, Farrokhyar F, Crouch S, Chan K, Sprague S, Bhandari M. Pre-operative intra-articular hip injection as a predictor of short-term outcome following arthroscopic management of femoroacetabular impingement. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):801–5.

    Article  PubMed  Google Scholar 

  35. Rivera F. Can viscosupplementation be used in the hip? An Italian perspective. Orthopedics. 2014;37(1):48–55.

    Article  PubMed  Google Scholar 

  36. Rizzo C, Vetro R, Vetro A, Mantia R, Iovane A, Di Gesù M, Vasto S, Di Noto L, Mazzola G, Caruso C. The role of platelet gel in osteoarticular injuries of young and old patients. Immun Ageing. 2014;11(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tietze DC, Geissler K, Borchers J. The effects of platelet-rich plasma in the treatment of large-joint osteoarthritis: a systematic review. Phys Sportsmed. 2014;42(2):27–37.

    Article  PubMed  Google Scholar 

  38. Baltzer AW, Ostapczuk MS, Stosch D, Seidel F, Granrath M. A new treatment for hip osteoarthritis: clinical evidence for the efficacy of autologous conditioned serum. Orthop Rev (Pavia). 2013;5(2):59–64.

    Article  Google Scholar 

  39. Redmond JM, Gupta A, Stake CE, Hammarstedt JE, Finch NA, Domb BG. Clinical results of hip arthroscopy for labral tears: a comparison between intraoperative platelet-rich plasma and bupivacaine injection. Arthroscopy. 2015;31(3):445–53.

    Article  PubMed  Google Scholar 

  40. Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res. 2007;2(1):122–31.

    Article  Google Scholar 

  41. Brunner A, Horisberger M, Herzog RF. Evaluation of a computed tomography-based navigation system prototype for hip arthroscopy in the treatment of femoroacetabular cam impingement. Arthroscopy. 2009;25(4):382–91.

    Article  PubMed  Google Scholar 

  42. Monahan E, Shimada K. Verifying the effectiveness of a computer-aided navigation system for arthroscopic hip surgery. Stud Health Technol Inform. 2008;132:302–7.

    PubMed  Google Scholar 

  43. Tannenbaum EP, Ross JR, Bedi A. Pros, cons, and future possibilities for use of computer navigation in hip arthroscopy. Sports Med Arthrosc. 2014;22(4):e33–41.

    Article  PubMed  Google Scholar 

  44. Werner SD, Stonestreet M, Jacofsky DJ. Makoplasty and the accuracy and efficacy of robotic-assisted arthroplasty. Surg Technol Int. 2014;24:302–6.

    PubMed  Google Scholar 

  45. Larson CM, Giveans MR, Stone RM. Arthroscopic debridement versus refixation of the acetabular labrum associated with femoroacetabular impingement: mean 3.5-year follow-up. Am J Sports Med. 2012;40(5):1015–21.

    Article  PubMed  Google Scholar 

  46. Philippon MJ, Nepple JJ, Campbell KJ, Dornan GJ, Jansson KS, LaPrade RF, Wijdicks CA. The hip fluid seal – part I: the effect of an acetabular labral tear, repair, resection, and reconstruction on hip fluid pressurization. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):722–9.

    Article  PubMed  Google Scholar 

  47. Nepple JJ, Philippon MJ, Campbell KJ, Dornan GJ, Jansson KS, LaPrade RF, Wijdicks CA. The hip fluid seal – part II: the effect of an acetabular labral tear, repair, resection, and reconstruction on hip stability to distraction. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):730–6.

    Article  PubMed  Google Scholar 

  48. Lee S, Wuerz TH, Shewman E, McCormick FM, Salata MJ, Philippon MJ, Nho SJ. Labral reconstruction with iliotibial band autografts and semitendinosus allografts improves hip joint contact area and contact pressure: an in vitro analysis. Am J Sports Med. 2015;43(1):98–104.

    Article  PubMed  Google Scholar 

  49. Domb BG, El Bitar YF, Stake CE, Trenga AP, Jackson TJ, Lindner D. Arthroscopic labral reconstruction is superior to segmental resection for irreparable labral tears in the hip: a matched-pair controlled study with minimum 2-year follow-up. Am J Sports Med. 2014;42(1):122–30.

    Article  PubMed  Google Scholar 

  50. Geyer MR, Philippon MJ, Fagrelius TS, Briggs KK. Acetabular labral reconstruction with an iliotibial band autograft: outcome and survivorship analysis at minimum 3-year follow-up. Am J Sports Med. 2013;41(8):1750–6.

    Article  PubMed  Google Scholar 

  51. Matsuda DK, Burchette RJ. Arthroscopic hip labral reconstruction with a gracilis autograft versus labral refixation: 2-year minimum outcomes. Am J Sports Med. 2013;41(5):980–7.

    Article  PubMed  Google Scholar 

  52. Boykin RE, Patterson D, Briggs KK, Dee A, Philippon MJ. Results of arthroscopic labral reconstruction of the hip in elite athletes. Am J Sports Med. 2013;41(10):2296–301.

    Article  PubMed  Google Scholar 

  53. Walker JA, Pagnotto M, Trousdale RT, Sierra RJ. Preliminary pain and function after labral reconstruction during femoroacetabular impingement surgery. Clin Orthop Relat Res. 2012;470(12):3414–20.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Park SE, Ko Y. Use of the quadriceps tendon in arthroscopic acetabular labral reconstruction: potential and benefits as an autograft option. Arthrosc Tech. 2013;2(3):e217–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ayeni OR, Alradwan H, de Sa D, Philippon MJ. The hip labrum reconstruction: indications and outcomes – a systematic review. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):737–43.

    Article  PubMed  Google Scholar 

  56. Chang CY, Gill CM, Huang AJ, Simeone FJ, Torriani M, McCarthy JC, Bredella MA. Use of MR arthrography in detecting tears of the ligamentum teres with arthroscopic correlation. Skeletal Radiol. 2015;44(3):361–7.

    Article  PubMed  Google Scholar 

  57. Philippon MJ, Pennock A, Gaskill TR. Arthroscopic reconstruction of the ligamentum teres: technique and early outcomes. J Bone Joint Surg Br. 2012;94(11):1494–8.

    Article  CAS  PubMed  Google Scholar 

  58. Amenabar T, O’Donnell J. Arthroscopic ligamentum teres reconstruction using semitendinosus tendon: surgical technique and an unusual outcome. Arthrosc Tech. 2012;1(2):e169–74.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lindner D, Sharp KG, Trenga AP, Stone J, Stake CE, Domb BG. Arthroscopic ligamentum teres reconstruction. Arthrosc Tech. 2012;2(1):e21–5.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mei-Dan O, McConkey MO. A novel technique for ligamentum teres reconstruction with “all-suture” anchors in the medial acetabular wall. Arthrosc Tech. 2014;3(2):e217–21.

    Article  PubMed  PubMed Central  Google Scholar 

  61. de SA D, Phillips M, Philippon MJ, Letkemann S, Simunovic N, Ayeni OR. Ligamentum teres injuries of the hip: a systematic review examining surgical indications, treatment options, and outcomes. Arthroscopy. 2014;30(12):1634–41.

    Article  Google Scholar 

  62. Walters BL, Cooper JH, Rodriguez JA. New findings in hip capsular anatomy: dimensions of capsular thickness and pericapsular contributions. Arthroscopy. 2014;30(10):1235–45.

    Article  PubMed  Google Scholar 

  63. Bayne CO, Stanley R, Simon P, Espinoza-Orias A, Salata MJ, Bush-Joseph CA, Inoue N, Nho SJ. Effect of capsulotomy on hip stability-a consideration during hip arthroscopy. Am J Orthop (Belle Mead NJ). 2014;43(4):160–5.

    Google Scholar 

  64. Mei-Dan O, McConkey MO, Brick M. Catastrophic failure of hip arthroscopy due to iatrogenic instability: can partial division of the ligamentum teres and iliofemoral ligament cause subluxation? Arthroscopy. 2012;28(3):440–5.

    Article  PubMed  Google Scholar 

  65. Slikker 3rd W, Van Thiel GS, Chahal J, Nho SJ. The use of double-loaded suture anchors for labral repair and capsular repair during hip arthroscopy. Arthrosc Tech. 2012;1(2):e213–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Harris JD, Slikker 3rd W, Gupta AK, McCormick FM, Nho SJ. Routine complete capsular closure during hip arthroscopy. Arthrosc Tech. 2013;2(2):e89–94.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chow RM, Engasser WM, Krych AJ, Levy BA. Arthroscopic capsular repair in the treatment of femoroacetabular impingement. Arthrosc Tech. 2013;3(1):e27–30.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Domb BG, Stake CE, Lindner D, El-Bitar Y, Jackson TJ. Arthroscopic capsular plication and labral preservation in borderline hip dysplasia: two-year clinical outcomes of a surgical approach to a challenging problem. Am J Sports Med. 2013;41(11):2591–8.

    Article  PubMed  Google Scholar 

  69. Fiz N, Sánchez M, Pérez JC, Guadilla J, Delgado D, Azofra J, Aizpurua B. A less-invasive technique for capsular management during hip arthroscopy for femoroacetabular impingement. Arthrosc Tech. 2014;3(4):e439–43.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Frank RM, Lee S, Bush-Joseph CA, Kelly BT, Salata MJ, Nho SJ. Improved outcomes after hip arthroscopic surgery in patients undergoing T-capsulotomy with complete repair versus partial repair for femoroacetabular impingement: a comparative matched-pair analysis. Am J Sports Med. 2014; 42(11):2634–42.

    Article  PubMed  Google Scholar 

  71. Karthikeyan S, Roberts S, Griffin D. Microfracture for acetabular chondral defects in patients with femoroacetabular impingement: results at second-look arthroscopic surgery. Am J Sports Med. 2012;40(12):2725–30.

    Article  PubMed  Google Scholar 

  72. McDonald JE, Herzog MM, Philippon MJ. Performance outcomes in professional hockey players following arthroscopic treatment of FAI and microfracture of the hip. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):915–9.

    Article  PubMed  Google Scholar 

  73. Domb BG, Redmond JM, Dunne KF, Stake CE, Gupta A. A matched-pair controlled study of microfracture of the hip with average 2-year follow-up: do full-thickness chondral defects portend an inferior prognosis in hip arthroscopy? Arthroscopy. 2015;31(4):628–34.

    Article  PubMed  Google Scholar 

  74. Fontana A. A novel technique for treating cartilage defects in the hip: a fully arthroscopic approach to using autologous matrix-induced chondrogenesis. Arthrosc Tech. 2012;1(1):e63–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Körsmeier K, Claßen T, Kamminga M, Rekowski J, Jäger M, Landgraeber S. Arthroscopic three-dimensional autologous chondrocyte transplantation using spheroids for the treatment of full-thickness cartilage defects of the hip joint. Knee Surg Sports Traumatol Arthrosc. 2014.

    Google Scholar 

  76. Girard J, Roumazeille T, Sakr M, Migaud H. Osteochondral mosaicplasty of the femoral head. Hip Int. 2011;21(5):542–8.

    Article  PubMed  Google Scholar 

  77. Khanna V, Tushinski DM, Drexler M, Backstein DB, Gross AE, Safir OA, Kuzyk PR. Cartilage restoration of the hip using fresh osteochondral allograft: resurfacing the potholes. Bone Joint J. 2014;96-B(11 Supple A):11–6.

    Article  CAS  PubMed  Google Scholar 

  78. Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med. 2014;42(6):1417–25.

    Article  PubMed  Google Scholar 

  79. Desai S. Surgical treatment of a tibial osteochondral defect with debridement, marrow stimulation, and micronized allograft cartilage matrix-an All-arthroscopic technique: a case report. J Foot Ankle Surg. 2016;55(2):279–82.

    Article  PubMed  Google Scholar 

  80. Bedi A, Lynch EB, Sibilsky Enselman ER, Davis ME, Dewolf PD, Makki TA, Kelly BT, Larson CM, Henning PT, Mendias CL. Elevation in circulating biomarkers of cartilage damage and inflammation in athletes with femoroacetabular impingement. Am J Sports Med. 2013;41(11):2585–90.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yamaguchi R, Yamamoto T, Motomura G, Ikemura S, Iwasaki K, Zhao G, Doi T, Iwamoto Y. Bone and cartilage metabolism markers in synovial fluid of the hip joint with secondary osteoarthritis. Rheumatology (Oxford). 2014;53(12):2191–5.

    Article  Google Scholar 

  82. Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication. 2011;3(2):021001.

    Article  CAS  PubMed  Google Scholar 

  83. Rimann M, Bono E, Annaheim H, Bleisch M, Graf-Hausner U. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells. J Lab Autom. 2015. pii: 2211068214567146. [Epub ahead of print].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Salata MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salata, M.J., Vasileff, W.K. (2017). Future Directions of FAI Surgery: Diagnosis and Treatment. In: Ayeni, O., Karlsson, J., Philippon, M., Safran, M. (eds) Diagnosis and Management of Femoroacetabular Impingement. Springer, Cham. https://doi.org/10.1007/978-3-319-32000-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32000-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31998-8

  • Online ISBN: 978-3-319-32000-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics