Skip to main content

Diagnosis and Management of Wound Infections

  • Chapter
  • First Online:
Critical Limb Ischemia

Abstract

Wound infections represent a major cause of morbidity, amputations, and increased health-care costs in the US population. A primary risk factor for lower extremity wounds is diabetes. According to the Centers for Disease Control and Prevention, the number of Americans diagnosed with diabetes has skyrocketed in the past three decades: from 5.6 million in 1980 to 20.9 million in 2011. Consequently, the number of discharges during this same time period for lower extremity amputations and wound infections has also increased.

Infection of a skin ulcer in both diabetic and nondiabetic populations has been shown to lead to decreased healing, increased treatment costs, and increased morbidity for patients. Diabetic wound infections have been shown to increase the risk for hospitalization and lower extremity amputation by 55- and 150-fold, respectively (Lavery et al., Diabetes Res Clin Pract 83:347–352, 2009). Due to increasing rates of diabetes, increased obesity in the population, and a longer life span of patients with diabetes, it is expected that lower extremity wounds will become an increasingly burdensome public health problem in the coming years (Lipsky et al., Clin Infect Dis 54:e132–e173, 2012), and an understanding of the best methods for diagnosis and treatment of wound infections will become increasingly important for physicians involved in the care of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray CK, Hinkle MK, Yun HC. History of infections associated with combat-related injuries. J Trauma. 2008;64:S221–31.

    Article  PubMed  Google Scholar 

  2. Wangensteen OH, Wangensteen SD. Military surgeons and surgery, old and new: an instructive chapter in management of contaminated wounds. Surgery. 1967;62:1102–24.

    CAS  PubMed  Google Scholar 

  3. Mathiasen H. Bugs and battles during the American Civil War. Am J Med. 2012;125:111.

    Article  PubMed  Google Scholar 

  4. Smallman-Raynor MR, Cliff AD. Impact of infectious diseases on war. Infect Dis Clin N Am. 2004;18:341–68.

    Article  Google Scholar 

  5. Calhoun JH, Murray CK, Manring MM. Multidrug-resistant organisms in military wounds from Iraq and Afghanistan. Clin Orthop Relat Res. 2008;466:1356–62.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koole K, Ellerbroek PM, Lagendijk R, Leenen LP, Ekkelenkamp MB. Colonization of Libyan civil war casualties with multidrug-resistant bacteria. Clin Microbiol Infect. 2013;19:E285–7.

    Article  CAS  PubMed  Google Scholar 

  7. Lavery LA, Peters EJ, Armstrong DG, Wendel CS, Murdoch DP, Lipsky BA. Risk factors for developing osteomyelitis in patients with diabetic foot wounds. Diabetes Res Clin Pract. 2009;83:347–52.

    Article  PubMed  Google Scholar 

  8. Lipsky BA, Berendt AR, Cornia PB, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54:e132–73.

    Article  PubMed  Google Scholar 

  9. Johnson JT, Yu VL. Role of anaerobic bacteria in postoperative wound infections following oncologic surgery of the head and neck. Ann Otol Rhinol Laryngol Suppl. 1991;154:46–8.

    CAS  PubMed  Google Scholar 

  10. Zoutman D, McDonald S, Vethanayagan D. Total and attributable costs of surgical-wound infections at a Canadian tertiary-care center. Infect Control Hosp Epidemiol. 1998;19:254–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kingsley A. The wound infection continuum and its application to clinical practice. Ostomy Wound Manage. 2003;49:1–7.

    PubMed  Google Scholar 

  12. Bryant RA, Nix DP. Acute and chronic wounds: current management concepts. 4th ed. St. Louis, MO: Elsevier/Mosby; 2012.

    Google Scholar 

  13. Cutting KF, White RJ, Mahoney P, Harding KG. Clinical identification of wound infection: a Delphi approach, European Wound Management Association: Position Statement 2005.

    Google Scholar 

  14. Gardner SE, Frantz RA. Wound bioburden and infection-related complications in diabetic foot ulcers. Biol Res Nurs. 2008;10:44–53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Glanze WD. Mosby’s dictionary of medicine, nursing and health professions. 9th ed. St Louis, MO: Elsevier Health Sciences; 2012.

    Google Scholar 

  16. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14:244–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomas JG, Cutting KF, Ruiz J, Leaper D, Synder RJ, Wolcott R. Advancing Your Practice: Understanding Wound Infection and the Role of Biofilm. Malvern, PA; 2008.

    Google Scholar 

  18. White RJ, Cutting K, Kingsley A. Topical antimicrobials in the control of wound bioburden. Ostomy Wound Manage. 2006;52:26–58.

    PubMed  Google Scholar 

  19. Gardner SE, Frantz RA, Doebbeling BN. The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen. 2001;9:178–86.

    Article  CAS  PubMed  Google Scholar 

  20. Mooney J. Illustrated dictionary of podiatry and foot science. Edinburgh, New York: Churchill Livingstone; 2009.

    Google Scholar 

  21. Jeng A, Beheshti M, Li J, Nathan R. The role of beta-hemolytic streptococci in causing diffuse, nonculturable cellulitis: a prospective investigation. Medicine (Baltimore). 2010;89:217–26.

    Article  Google Scholar 

  22. Karppelin M, Siljander T, Vuopio-Varkila J, et al. Factors predisposing to acute and recurrent bacterial non-necrotizing cellulitis in hospitalized patients: a prospective case-control study. Clin Microbiol Infect. 2010;16:729–34.

    Article  CAS  PubMed  Google Scholar 

  23. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59:e10–52.

    Article  PubMed  Google Scholar 

  24. Lipsky BA, Armstrong DG, Citron DM, Tice AD, Morgenstern DE, Abramson MA. Ertapenem versus piperacillin/tazobactam for diabetic foot infections (SIDESTEP): prospective, randomised, controlled, double-blinded, multicentre trial. Lancet. 2005;366:1695–703.

    Article  CAS  PubMed  Google Scholar 

  25. Daryapeyma A, Ostlund O, Wahlgren CM. Healthcare-associated infections after lower extremity revascularization. Eur J Vasc Endovasc Surg. 2014;48:72–7.

    Article  CAS  PubMed  Google Scholar 

  26. Ratnayake A, Samarasinghe B, Bala M. Outcomes of popliteal vascular injuries at Sri Lankan war-front military hospital: case series of 44 cases. Injury. 2014;45:879–84.

    Article  PubMed  Google Scholar 

  27. Christensen GJ, Bruggemann H. Bacterial skin commensals and their role as host guardians. Benefic Microbes. 2014;5:201–15.

    Article  CAS  Google Scholar 

  28. Bowler PG, Davies BJ. The microbiology of infected and noninfected leg ulcers. Int J Dermatol. 1999;38:573–8.

    Article  CAS  PubMed  Google Scholar 

  29. Brook I, Frazier EH. Aerobic and anaerobic bacteriology of wounds and cutaneous abscesses. Arch Surg. 1990;125:1445–51.

    Article  CAS  PubMed  Google Scholar 

  30. Obolski U, Alon D, Hadany L, Stein GY. Resistance profiles of coagulase-negative staphylococci contaminating blood cultures predict pathogen resistance and patient mortality. J Antimicrob Chemother. 2014.

    Google Scholar 

  31. Brook I. A 12 year study of aerobic and anaerobic bacteria in intra-abdominal and postsurgical abdominal wound infections. Surg Gynecol Obstet. 1989;169:387–92.

    CAS  PubMed  Google Scholar 

  32. Brook I. Microbiological studies of decubitus ulcers in children. J Pediatr Surg. 1991;26:207–9.

    Article  CAS  PubMed  Google Scholar 

  33. Trivedi U, Parameswaran S, Armstrong A, et al. Prevalence of multiple antibiotic resistant infections in diabetic versus nondiabetic wounds. J Pathog. 2014;2014:173053.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Verkade E, Kluytmans-van den Bergh M, van Benthem B, et al. Transmission of methicillin-resistant Staphylococcus aureus CC398 from livestock veterinarians to their household members. PLoS One. 2014;9, e100823.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Landelle C, Marimuthu K, Harbarth S. Infection control measures to decrease the burden of antimicrobial resistance in the critical care setting. Curr Opin Crit Care. 2014;20(5):499–506.

    Article  PubMed  Google Scholar 

  36. Summanen PH, Talan DA, Strong C, et al. Bacteriology of skin and soft-tissue infections: comparison of infections in intravenous drug users and individuals with no history of intravenous drug use. Clin Infect Dis. 1995;20 Suppl 2:S279–82.

    Article  PubMed  Google Scholar 

  37. Hohn DC, MacKay RD, Halliday B, Hunt TK. Effect of O2 tension on microbicidal function of leukocytes in wounds and in vitro. Surg Forum. 1976;27:18–20.

    CAS  PubMed  Google Scholar 

  38. Niinikoski J, Gottrup F, Hunt TK. The role of oxygen in wound repair. Petersfield: Wrightson Biomedical Publishing Ltd; 1991.

    Google Scholar 

  39. Hunt TK, Hopf HW. Wound healing and wound infection. What surgeons and anesthesiologists can do. Surg Clin North Am. 1997;77:587–606.

    Article  CAS  PubMed  Google Scholar 

  40. Seabrook GR, Edmiston CE, Schmitt DD, Krepel C, Bandyk DF, Towne JB. Comparison of serum and tissue antibiotic levels in diabetes-related foot infections. Surgery. 1991;110:671–6. discussion 6–7.

    CAS  PubMed  Google Scholar 

  41. Cutting KF, White R. Defined and refined: criteria for identifying wound infection revisited. Br J Community Nurs. 2004;9:S6–15.

    Article  PubMed  Google Scholar 

  42. Hunt TK. Surgical wound infections: an overview. Am J Med. 1981;70:712–8.

    Article  CAS  PubMed  Google Scholar 

  43. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.

    Article  CAS  PubMed  Google Scholar 

  44. Chakraborti C, Le C, Yanofsky A. Sensitivity of superficial cultures in lower extremity wounds. J Hosp Med. 2010;5:415–20.

    Article  PubMed  Google Scholar 

  45. Lee PC, Turnidge J, McDonald PJ. Fine-needle aspiration biopsy in diagnosis of soft tissue infections. J Clin Microbiol. 1985;22:80–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dunyach-Remy C, Cadiere A, Richard JL, et al. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE): a promising tool to diagnose bacterial infections in diabetic foot ulcers. Diabetes Metab. 2014;40(6):476–80.

    Article  CAS  PubMed  Google Scholar 

  47. Bendy Jr RH, Nuccio PA, Wolfe E, et al. Relationship of quantitative wound bacterial counts to healing of decubiti: effect of topical gentamicin. Antimicrob Agents Chemother (Bethesda). 1964;10:147–55.

    Google Scholar 

  48. Breidenbach WC, Trager S. Quantitative culture technique and infection in complex wounds of the extremities closed with free flaps. Plast Reconstr Surg. 1995;95:860–5.

    Article  CAS  PubMed  Google Scholar 

  49. Jonaidi Jafari N, Safaee Firouzabadi M, Izadi M, Safaee Firouzabadi MS, Saburi A. Can procalcitonin be an accurate diagnostic marker for the classification of diabetic foot ulcers? Int J Endocrinol Metab. 2014;12, e13376.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gallagher JC, MacDougall C. Antibiotics, simplified. Sudbury: Jones and Bartlett Publishers; 2009.

    Google Scholar 

  51. Finberg RW, Moellering RC, Tally FP, et al. The importance of bactericidal drugs: future directions in infectious disease. Clin Infect Dis. 2004;39:1314–20.

    Article  CAS  PubMed  Google Scholar 

  52. Moran GJ, Krishnadasan A, Gorwitz RJ, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med. 2006;355:666–74.

    Article  CAS  PubMed  Google Scholar 

  53. Gurusamy KS, Koti R, Toon CD, Wilson P, Davidson BR. Antibiotic therapy for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) in non surgical wounds. Cochrane Database Syst Rev. 2013;11, CD010427.

    Google Scholar 

  54. Master RN, Clark RB, Karlowsky JA, Ramirez J, Bordon JM. Analysis of resistance, cross-resistance and antimicrobial combinations for Pseudomonas aeruginosa isolates from 1997 to 2009. Int J Antimicrob Agents. 2011;38:291–5.

    Article  CAS  PubMed  Google Scholar 

  55. Pillar CM, Brown NP, Sahm DF et al. Trends towards increased resistance among clinically important gram-negative pathogens in the US; results from 10 years of TRUST surveillance (1999–2009). Abstract C2-696, Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA; 2010.

    Google Scholar 

  56. Bin C, Hui W, Renyuan Z, et al. Outcome of cephalosporin treatment of bacteremia due to CTX-M-type extended-spectrum beta-lactamase-producing Escherichia coli. Diagn Microbiol Infect Dis. 2006;56:351–7.

    Article  PubMed  Google Scholar 

  57. Labombardi VJ, Rojtman A, Tran K. Use of cefepime for the treatment of infections caused by extended spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Diagn Microbiol Infect Dis. 2006;56:313–5.

    Article  CAS  PubMed  Google Scholar 

  58. Lee NY, Lee CC, Huang WH, Tsui KC, Hsueh PR, Ko WC. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis. 2013;56:488–95.

    Article  CAS  PubMed  Google Scholar 

  59. O’Meara S, Al-Kurdi D, Ologun Y, Ovington LG, Martyn-St James M, Richardson R. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev. 2013;12, CD003557.

    Google Scholar 

  60. Fleischer AE, Didyk AA, Woods JB, Burns SE, Wrobel JS, Armstrong DG. Combined clinical and laboratory testing improves diagnostic accuracy for osteomyelitis in the diabetic foot. J Foot Ankle Surg. 2009;48:39–46.

    Article  PubMed  Google Scholar 

  61. Kapoor A, Page S, Lavalley M, Gale DR, Felson DT. Magnetic resonance imaging for diagnosing foot osteomyelitis: a meta-analysis. Arch Intern Med. 2007;167:125–32.

    Article  PubMed  Google Scholar 

  62. Fujii M, Armsrong DG, Terashi H. Efficacy of magnetic resonance imaging in diagnosing diabetic foot osteomyelitis in the presence of ischemia. J Foot Ankle Surg. 2013;52:717–23.

    Article  PubMed  Google Scholar 

  63. Butalia S, Palda VA, Sargeant RJ, Detsky AS, Mourad O. Does this patient with diabetes have osteomyelitis of the lower extremity? JAMA. 2008;299:806–13.

    Article  CAS  PubMed  Google Scholar 

  64. Dinh MT, Abad CL, Safdar N. Diagnostic accuracy of the physical examination and imaging tests for osteomyelitis underlying diabetic foot ulcers: meta-analysis. Clin Infect Dis. 2008;47:519–27.

    Article  PubMed  Google Scholar 

  65. Ertugrul MB, Baktiroglu S, Salman S, et al. The diagnosis of osteomyelitis of the foot in diabetes: microbiological examination vs. magnetic resonance imaging and labelled leucocyte scanning. Diabet Med. 2006;23:649–53.

    Article  CAS  PubMed  Google Scholar 

  66. Marschall J, Bhavan KP, Olsen MA, Fraser VJ, Wright NM, Warren DK. The impact of prebiopsy antibiotics on pathogen recovery in hematogenous vertebral osteomyelitis. Clin Infect Dis. 2011;52:867–72.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Khatri G, Wagner DK, Sohnle PG. Effect of bone biopsy in guiding antimicrobial therapy for osteomyelitis complicating open wounds. Am J Med Sci. 2001;321:367–71.

    Article  CAS  PubMed  Google Scholar 

  68. Senneville E, Melliez H, Beltrand E, et al. Culture of percutaneous bone biopsy specimens for diagnosis of diabetic foot osteomyelitis: concordance with ulcer swab cultures. Clin Infect Dis. 2006;42:57–62.

    Article  PubMed  Google Scholar 

  69. Zuluaga AF, Galvis W, Jaimes F, Vesga O. Lack of microbiological concordance between bone and non-bone specimens in chronic osteomyelitis: an observational study. BMC Infect Dis. 2002;2:8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Morales Lozano R, Gonzalez Fernandez ML, Martinez Hernandez D, Beneit Montesinos JV, Guisado Jimenez S, Gonzalez Jurado MA. Validating the probe-to-bone test and other tests for diagnosing chronic osteomyelitis in the diabetic foot. Diabetes Care. 2010;33:2140–5.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Malone M, Bowling FL, Gannass A, Jude EB, Boulton AJ. Deep wound cultures correlate well with bone biopsy culture in diabetic foot osteomyelitis. Diabetes Metab Res Rev. 2013;29:546–50.

    CAS  PubMed  Google Scholar 

  72. Howard CB, Einhorn M, Dagan R, Yagupski P, Porat S. Fine-needle bone biopsy to diagnose osteomyelitis. J Bone Joint Surg (Br). 1994;76:311–4.

    CAS  Google Scholar 

  73. Sanverdi SE, Ergen BF, Oznur A. Current challenges in imaging of the diabetic foot. Diabet Foot Ankle. 2012;3, 18754.

    Article  Google Scholar 

  74. Erdman WA, Buethe J, Bhore R, et al. Indexing severity of diabetic foot infection with 99mTc-WBC SPECT/CT hybrid imaging. Diabetes Care. 2012;35:1826–31.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Capriotti G, Chianelli M, Signore A. Nuclear medicine imaging of diabetic foot infection: results of meta-analysis. Nucl Med Commun. 2006;27:757–64.

    Article  PubMed  Google Scholar 

  76. Basu S, Chryssikos T, Houseni M, et al. Potential role of FDG PET in the setting of diabetic neuro-osteoarthropathy: can it differentiate uncomplicated Charcot’s neuroarthropathy from osteomyelitis and soft-tissue infection? Nucl Med Commun. 2007;28:465–72.

    Article  PubMed  Google Scholar 

  77. Heiba SI, Kolker D, Mocherla B, et al. The optimized evaluation of diabetic foot infection by dual isotope SPECT/CT imaging protocol. J Foot Ankle Surg. 2010;49:529–36.

    Article  PubMed  Google Scholar 

  78. Keidar Z, Militianu D, Melamed E, Bar-Shalom R, Israel O. The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med. 2005;46:444–9.

    PubMed  Google Scholar 

  79. Nawaz A, Torigian DA, Siegelman ES, Basu S, Chryssikos T, Alavi A. Diagnostic performance of FDG-PET, MRI, and plain film radiography (PFR) for the diagnosis of osteomyelitis in the diabetic foot. Mol Imaging Biol. 2010;12:335–42.

    Article  PubMed  Google Scholar 

  80. Widatalla AH, Mahadi SE, Shawer MA, Mahmoud SM, Abdelmageed AE, Ahmed ME. Diabetic foot infections with osteomyelitis: efficacy of combined surgical and medical treatment. Diabet Foot Ankle. 2012;3, 18809.

    Article  Google Scholar 

  81. Hatzenbuehler J, Pulling TJ. Diagnosis and management of osteomyelitis. Am Fam Physician. 2011;84:1027–33.

    PubMed  Google Scholar 

  82. Sagray BA, Malhotra S, Steinberg JS. Current therapies for diabetic foot infections and osteomyelitis. Clin Podiatr Med Surg. 2014;31:57–70.

    Article  PubMed  Google Scholar 

  83. Game FL, Jeffcoate WJ. Primarily non-surgical management of osteomyelitis of the foot in diabetes. Diabetologia. 2008;51:962–7.

    Article  CAS  PubMed  Google Scholar 

  84. Ulcay A, Karakas A, Mutluoglu M, Uzun G, Turhan V, Ay H. Antibiotherapy with and without bone debridement in diabetic foot osteomyelitis: a retrospective cohort study. Pak J Med Sci. 2014;30:28–31.

    PubMed  PubMed Central  Google Scholar 

  85. Senneville E, Lombart A, Beltrand E, et al. Outcome of diabetic foot osteomyelitis treated nonsurgically: a retrospective cohort study. Diabetes Care. 2008;31:637–42.

    Article  PubMed  Google Scholar 

  86. Berendt AR, Peters EJ, Bakker K, et al. Diabetic foot osteomyelitis: a progress report on diagnosis and a systematic review of treatment. Diabetes Metab Res Rev. 2008;24 Suppl 1:S145–61.

    Article  PubMed  Google Scholar 

  87. Kasper DL, Fauci AS, Harrison TR. Harrison’s infectious diseases. 2nd ed. New York: McGraw-Hill Medical; 2013.

    Google Scholar 

  88. Blanes JI, Representatives of Spanish Society of Surgeons, Representatives of Spanish Society of Angiology and Vascular Surgery, et al. Consensus document on treatment of infections in diabetic foot. Rev Esp Quimioter. 2011;24:233–62.

    PubMed  Google Scholar 

  89. Lima AL, Oliveira PR, Carvalho VC, Cimerman S, Savio E, Diretrizes Panamericanas para el Tratamiento de las Osteomielitis e Infecciones de Tejidos Blandos Group. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18(5):526–34.

    Article  PubMed  Google Scholar 

  90. Melamed EA, Peled E. Antibiotic impregnated cement spacer for salvage of diabetic osteomyelitis. Foot Ankle Int. 2012;33:213–9.

    Article  PubMed  Google Scholar 

  91. Zalavras CG, Patzakis MJ, Holtom P. Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop Relat Res. 2004;427:86–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lora, A.J.M., Herrick, J.A., Recht, B., Murphy-Aguilu, I. (2017). Diagnosis and Management of Wound Infections. In: Dieter, R., Dieter, Jr, R., Dieter, III, R., Nanjundappa, A. (eds) Critical Limb Ischemia. Springer, Cham. https://doi.org/10.1007/978-3-319-31991-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31991-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31989-6

  • Online ISBN: 978-3-319-31991-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics