Skip to main content

Diagnostic Approach to Chronic Critical Limb Ischemia

  • Chapter
  • First Online:
Critical Limb Ischemia

Abstract

Critical limb ischemia (CLI), if left untreated, is associated with a high risk of limb loss (Hirsch et al., Circulation 113(11):e463–654, 2006; Abou-Zamzam et al., Ann Vasc Surg 21(4):458–463, 2007; Anderson et al., Circulation 127(13):1425–1443, 2013). Before revascularization can be performed, a thorough but efficient diagnostic approach is warranted. The diagnostic process begins with an initial clinical evaluation to assess for the presence of peripheral artery disease (PAD). Any underlying comorbidities the patient has must be identified as they will influence decisions regarding the diagnostic evaluation. CLI is manifested by rest pain and/or tissue loss of the lower extremity but is also an indicator of atherosclerotic disease in other vascular beds that increases the patient’s risk of cardiovascular events (Criqui et al., N Engl J Med 326:381–386, 1992; Caro et al., BMC Cardiovasc Disord 5:14, 2005; Fowkes et al., JAMA 300(2):197–208, 2008; Resnick et al., Circulation 109(6):733–739, 2004; Suominen et al., Eur J Vasc Endovasc Surg 39(3):316–322, 2010); this along with other comorbidities will determine the patient’s risk of revascularization. The process then proceeds to diagnostic studies to confirm the presence of PAD, localize the lesions that need treatment, and finally plan a revascularization procedure if indicated (Hirsch et al., Circulation 113(11):e463–654, 2006). With the recent explosion of treatment modalities for PAD, there has been an equal development of imaging modalities available to delineate the patient’s vascular anatomy prior to revascularization (Harris et al., AJR Am J Roentgenol 197(2):W314–W317, 2011; de Vos et al., J Vasc Surg 59(5):1315–1322 e1, 2014). Noninvasive vascular lab studies are used to determine the hemodynamic significance of the patient’s vascular lesions (Anderson et al., Circulation 127(13):1425–1443, 2013). Anatomic imaging by arterial duplex ultrasound, computed tomography angiography (CTA), magnetic resonance angiography (MRA), or catheter-based digital subtraction angiography (DSA) can then be used to plan a revascularization procedure (Anderson et al., Circulation 127(13):1425–1443, 2013; de Vos et al., J Vasc Surg 59(5):1315–1322 e1, 2014; Grassbaugh, J Vasc Surg 37(6):1186–1190, 2003; Collins et al., BMJ 334(7606):1257, 2007; Lowery et al., Ann Vasc Surg 21(4):443–451, 2007). The best imaging study to obtain depends on the patient’s underlying comorbidities, distribution of disease, and institution-specific imaging capabilities (first figure of this chapter).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch AT, et al. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113(11):e463–654.

    Google Scholar 

  2. Abou-Zamzam Jr AM, et al. A prospective analysis of critical limb ischemia: factors leading to major primary amputation versus revascularization. Ann Vasc Surg. 2007;21(4):458–63.

    Article  PubMed  Google Scholar 

  3. Anderson JL, et al. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(13):1425–43.

    Article  PubMed  Google Scholar 

  4. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, Browner D. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med. 1992;326:381–6.

    Google Scholar 

  5. Caro J, et al. The morbidity and mortality following a diagnosis of peripheral arterial disease: long-term follow-up of a large database. BMC Cardiovasc Disord. 2005;5:14.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fowkes FGR, et al. Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality – a meta-analysis. JAMA. 2008;300(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  7. Resnick HE, et al. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: the Strong Heart Study. Circulation. 2004;109(6):733–9.

    Article  PubMed  Google Scholar 

  8. Suominen V, et al. PAD as a risk factor for mortality among patients with elevated ABI--a clinical study. Eur J Vasc Endovasc Surg. 2010;39(3):316–22.

    Article  CAS  PubMed  Google Scholar 

  9. Harris TJ, Zafar AM, Murphy TP. Utilization of lower extremity arterial disease diagnostic and revascularization procedures in medicare beneficiaries 2000–2007. AJR Am J Roentgenol. 2011;197(2):W314–7.

    Article  PubMed  Google Scholar 

  10. de Vos MS, et al. National variation in the utilization of alternative imaging in peripheral arterial disease. J Vasc Surg. 2014;59(5):1315–22. e1.

    Article  PubMed  Google Scholar 

  11. Grassbaugh J. Blinded comparison of preoperative duplex ultrasound scanning and contrast arteriography for planning revascularization at the level of the tibia. J Vasc Surg. 2003;37(6):1186–90.

    Article  PubMed  Google Scholar 

  12. Collins R, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ. 2007;334(7606):1257.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lowery AJ, et al. A prospective feasibility study of duplex ultrasound arterial mapping, digital-subtraction angiography, and magnetic resonance angiography in management of critical lower limb ischemia by endovascular revascularization. Ann Vasc Surg. 2007;21(4):443–51.

    Article  CAS  PubMed  Google Scholar 

  14. Norgren L, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45 Suppl S:S5–67.

    Google Scholar 

  15. Olin JW, et al. ACCF/AHA/ACR/SCAI/SIR/SVM/SVN/SVS 2010 performance measures for adults with peripheral artery disease. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures, the American College of Radiology, the Society for Cardiac Angiography and Interventions, the Society for Interventional Radiology, the Society for Vascular Medicine, the Society for Vascular Nursing, and the Society for Vascular Surgery (Writing Committee to Develop Clinical Performance Measures for Peripheral Artery Disease). Developed in collaboration with the American Association of Cardiovascular and Pulmonary Rehabilitation; the American Diabetes Association; the Society for Atherosclerosis Imaging and Prevention; the Society for Cardiovascular Magnetic Resonance; the Society of Cardiovascular Computed Tomography; and the PAD Coalition. Endorsed by the American Academy of Podiatric Practice Management. J Vasc Surg. 2010;52(6):1616–52.

    Google Scholar 

  16. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation. 2004;110(6):738–43.

    Article  PubMed  Google Scholar 

  17. Ouriel K, Zarins C. Doppler ankle pressure. Arch Surg. 1982;117:1297–300.

    Article  CAS  PubMed  Google Scholar 

  18. Hiatt WR. Medical treatment of peripheral arterial disease and claudication. N Engl J Med. 2001;344(21):1608–21.

    Article  CAS  PubMed  Google Scholar 

  19. Klein S, Hage JJ. Measurement, calculation, and normal range of the ankle-arm index: a bibliometric analysis and recommendation for standardization. Ann Vasc Surg. 2006;20(2):282–92.

    Article  PubMed  Google Scholar 

  20. Koelemay MJ, et al. Duplex scanning allows selective use of arteriography in the management of patients with severe lower leg arterial disease. J Vasc Surg. 2001;34(4):661–7.

    Article  CAS  PubMed  Google Scholar 

  21. Campbell WB, Fletcher EL, Hands LJ. Assessment of the distal lower limb arteries: a comparison of arteriography and Doppler ultrasound. Ann R Coll Surg Engl. 1986;68:37–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stewart AHR, et al. Pre-operative hand-held doppler run-off score can be used to stratify risk prior to infra-inguinal bypass surgery. Eur J Vasc Endovasc Surg. 2002;23(6):500–4.

    Article  CAS  PubMed  Google Scholar 

  23. Eiberg JP, et al. Duplex ultrasound scanning of peripheral arterial disease of the lower limb. Eur J Vasc Endovasc Surg. 2010;40(4):507–12.

    Article  CAS  PubMed  Google Scholar 

  24. Lijmer JG, et al. ROC analysis of noninvasive tests for peripheral arterial disease. Ultrasound Med Biol. 1996;22(4):391–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kaiser V, et al. The influence of experience on the reproducibility of the ankle-brachial systolic pressure ratio in peripheral arterial occlusive disease. Eur J Vasc Endovasc Surg. 1999;18(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  26. Holland-Letz T, et al. Reproducibility and reliability of the ankle--brachial index as assessed by vascular experts, family physicians and nurses. Vasc Med. 2007;12(2):105–12.

    Article  PubMed  Google Scholar 

  27. McLafferty RB, et al. Ability of ankle-brachial index to detect lower-extremity atherosclerotic disease progression. Arch Surg. 1997;132:836–41.

    Article  CAS  PubMed  Google Scholar 

  28. Brooks B, et al. TBI or not TBI: that is the question. Is it better to measure toe pressure than ankle pressure in diabetic patients? Diabet Med. 2000;18:528–32.

    Article  Google Scholar 

  29. Potier L, et al. Ankle-to-brachial ratio index underestimates the prevalence of peripheral occlusive disease in diabetic patients at high risk for arterial disease. Diabetes Care. 2009;32(4), e44.

    Article  PubMed  Google Scholar 

  30. Nam SC, et al. Factors affecting the validity of ankle-brachial index in the diagnosis of peripheral arterial obstructive disease. Angiology. 2010;61(4):392–6.

    Article  PubMed  Google Scholar 

  31. Hauser CJ, et al. Superiority of transcutaneous oximetry in noninvasive vascular diagnosis in patients with diabetes. Arch Surg. 1984;119(6):690–4.

    Article  CAS  PubMed  Google Scholar 

  32. Ballard JL, et al. A prospective evaluation of transcutaneous oxyen measurements in the management of diabetic foot problems. J Vasc Surg. 1995;22:485–92.

    Article  CAS  PubMed  Google Scholar 

  33. Bone GE, et al. Value of segmental limb blood pressures in predicting results of aortofemoral bypass. Am J Surg. 1976;132(6):733–8.

    Article  CAS  PubMed  Google Scholar 

  34. Lynch TG, et al. Interpretation of doppler segmental pressures in peripheral vascular occlusive disease. Arch Surg. 1983;119:465–7.

    Article  Google Scholar 

  35. Pickering TG, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005;111(5):697–716.

    Article  PubMed  Google Scholar 

  36. Symes JF, Graham AM, Mousseau M. Doppler waveform analysis versus segmental pressure and pulse-volume recording: assessment of occlusive disease in the lower extremity. Can J Surg. 1984;27(4):345–7.

    CAS  PubMed  Google Scholar 

  37. Moneta GL, et al. Noninvasive localization of arterial occlusive disease: a comparison of segmental Doppler pressures and arterial duplex mapping. J Vasc Surg. 1993;17(3):578–82.

    Article  CAS  PubMed  Google Scholar 

  38. Eslahpazir BA, et al. Pulse volume recording does not enhance segmental pressure readings for peripheral arterial disease stratification. Ann Vasc Surg. 2014;28(1):18–27.

    Article  PubMed  Google Scholar 

  39. Rutherford RB, Lowenstein DH, Klein MF. Combining segmental systolic pressures and plethysmography to diagnose arterial occlusive disease of the legs. Am J Surg. 1979;138(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  40. Allen J, et al. A prospective comparison of bilateral photoplethysmography versus the ankle-brachial pressure index for detecting and quantifying lower limb peripheral arterial disease. J Vasc Surg. 2008;47(4):794–802.

    Article  PubMed  Google Scholar 

  41. Khandanpour N, et al. The association between ankle brachial pressure index and pulse wave velocity: clinical implication of pulse wave velocity. Angiology. 2009;60(6):732–8.

    Article  PubMed  Google Scholar 

  42. Williams DT, Price P, Harding KG. The influence of diabetes and lower limb arterial disease on cutaneous foot perfusion. J Vasc Surg. 2006;44(4):770–5.

    Article  PubMed  Google Scholar 

  43. Chin JA, Wang EC, Kibbe MR. Evaluation of hyperspectral technology for assessing the presence and severity of peripheral artery disease. J Vasc Surg. 2011;54(6):1679–88.

    Article  PubMed  Google Scholar 

  44. Yamada T, et al. Clinical reliability and utility of skin perfusion pressure measurement in ischemic limbs--comparison with other noninvasive diagnostic methods. J Vasc Surg. 2008;47(2):318–23.

    Article  PubMed  Google Scholar 

  45. Andersen CA. Noninvasive assessment of lower extremity hemodynamics in individuals with diabetes mellitus. J Vasc Surg. 2010;52(3 Suppl):76S–80.

    Article  PubMed  Google Scholar 

  46. Londahl M, et al. Relationship between ulcer healing after hyperbaric oxygen therapy and transcutaneous oximetry, toe blood pressure and ankle-brachial index in patients with diabetes and chronic foot ulcers. Diabetologia. 2011;54(1):65–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jorneskog G, Djavani K, Brismar K. Day-to-day variability of transcutaneous oxygen tension in patients with diabetes mellitus and peripheral arterial occlusive disease. J Vasc Surg. 2001;34(2):277–82.

    Article  CAS  PubMed  Google Scholar 

  48. de Meijer VE, et al. Reference value of transcutaneous oxygen measurement in diabetic patients compared with nondiabetic patients. J Vasc Surg. 2008;48(2):382–8.

    Article  PubMed  Google Scholar 

  49. de Graaff JC, et al. Evaluation of toe pressure and transcutaneous oxygen measurements in management of chronic critical leg ischemia: a diagnostic randomized clinical trial. J Vasc Surg. 2003;38(3):528–34.

    Article  PubMed  Google Scholar 

  50. Adera HM, et al. Prediction of amputation wound healing with skin perfusion pressure. J Vasc Surg. 1995;21(5):823–8. discussion 828–9.

    Article  CAS  PubMed  Google Scholar 

  51. Castronuovo Jr JJ, et al. Skin perfusion pressure measurement is valuable in the diagnosis of critical limb ischemia. J Vasc Surg. 1997;26(4):629–37.

    Article  PubMed  Google Scholar 

  52. Jafari-Saraf L, Gordon IL. Hyperspectral imaging and ankle: brachial indices in peripheral arterial disease. Ann Vasc Surg. 2010;24(6):741–6.

    Article  PubMed  Google Scholar 

  53. Jafari-Saraf L, Wilson SE, Gordon IL. Hyperspectral image measurements of skin hemoglobin compared with transcutaneous PO2 measurements. Ann Vasc Surg. 2012;26(4):537–48.

    Article  PubMed  Google Scholar 

  54. Khaodhiar L, et al. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care. 2007;30:903–10.

    Article  PubMed  Google Scholar 

  55. Cossman DV, et al. Comparison of contrast arteriography to arterial mapping with color-flow duplex imaging in the lower extremities. J Vasc Surg. 1989;10(5):0522–9.

    Article  CAS  Google Scholar 

  56. Ernst CB, et al. Accuracy of lower extremity arterial duplex mapping. J Vasc Surg. 1992;15(2):0275–84.

    Article  Google Scholar 

  57. Proia RR, et al. Early results of infragenicular revascularization based solely on duplex arteriography. J Vasc Surg. 2001;33(6):1165–70.

    Article  CAS  PubMed  Google Scholar 

  58. Kakkos SK, Tsolakis IA. Is duplex ultrasound scanning for peripheral arterial disease of the lower limb a non-invasive alternative or an adjunct to angiography? Eur J Vasc Endovasc Surg. 2010;40(4):513–4.

    Article  CAS  PubMed  Google Scholar 

  59. Ubbink DT, Legemate DA, Llull J-B. Color-flow duplex scanning of the leg arteries by use of a new echo-enhancing agent. J Vasc Surg. 2002;35(2):392–6.

    Article  PubMed  Google Scholar 

  60. Amarteifio E, et al. Dynamic contrast-enhanced ultrasound and transient arterial occlusion for quantification of arterial perfusion reserve in peripheral arterial disease. Eur J Radiol. 2012;81(11):3332–8.

    Article  CAS  PubMed  Google Scholar 

  61. Duerschmied D, et al. Success of arterial revascularization determined by contrast ultrasound muscle perfusion imaging. J Vasc Surg. 2010;52(6):1531–6.

    Article  PubMed  Google Scholar 

  62. Amarteifio E, et al. Dynamic contrast-enhanced ultrasound for assessment of therapy effects on skeletal muscle microcirculation in peripheral arterial disease: pilot study. Eur J Radiol. 2013;82(4):640–6.

    Article  CAS  PubMed  Google Scholar 

  63. Janvier MA, et al. A 3-D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility. Ultrasound Med Biol. 2014;40(1):232–43.

    Article  PubMed  Google Scholar 

  64. Onogi S, et al. Robotic ultrasound guidance by B-scan plane positioning control. Procedia CIRP. 2013;5:100–3.

    Article  Google Scholar 

  65. Kock MC, et al. DSA versus multi-detector row CT angiography in peripheral arterial disease: randomized controlled trial. Radiology. 2005;237(2):727–37.

    Article  PubMed  Google Scholar 

  66. Sommer WH, et al. Diagnostic value of time-resolved CT angiography for the lower leg. Eur Radiol. 2010;20(12):2876–81.

    Article  PubMed  Google Scholar 

  67. Utsunomiya D, et al. Comparison of standard- and low-tube voltage MDCT angiography in patients with peripheral arterial disease. Eur Radiol. 2010;20(11):2758–65.

    Article  PubMed  Google Scholar 

  68. Kayhan A, et al. Multidetector CT angiography versus arterial duplex USG in diagnosis of mild lower extremity peripheral arterial disease: is multidetector CT a valuable screening tool? Eur J Radiol. 2012;81(3):542–6.

    Article  PubMed  Google Scholar 

  69. Met R, et al. Diagnostic performance of computed tomography angiography in peripheral arterial disease a systematic review and meta-analysis. JAMA. 2009;301(4):415–24.

    Article  CAS  PubMed  Google Scholar 

  70. Duan Y, et al. Diagnostic efficiency of low-dose CT angiography compared with conventional angiography in peripheral arterial occlusions. AJR Am J Roentgenol. 2013;201(6):W906–14.

    Article  PubMed  Google Scholar 

  71. Bueno A, et al. Diagnostic accuracy of contrast-enhanced magnetic resonance angiography and duplex ultrasound in patients with peripheral vascular disease. Vasc Endovascular Surg. 2010;44(7):576–85.

    Article  PubMed  Google Scholar 

  72. Ouwendijk R, et al. Multicenter randomized controlled trial of the costs and effects of noninvasive diagnostic imaging in patients with peripheral arterial disease: the DIPAD trial. AJR Am J Roentgenol. 2008;190(5):1349–57.

    Article  PubMed  Google Scholar 

  73. de Vos MS, et al. Treatment planning for peripheral arterial disease based on duplex ultrasonography and computed tomography angiography: consistency, confidence and the value of additional imaging. Surgery. 2014;156(2):492–502.

    Article  PubMed  Google Scholar 

  74. Morkos SK, Thomsen HS, Webb JA. Contrast-media-induced nephrotoxicity: a consensus report. Eur Radiol. 1999;9:1602–13.

    Article  Google Scholar 

  75. McCullough PA, et al. Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol. 2006;98(6A):5K–13.

    Article  CAS  PubMed  Google Scholar 

  76. Kim SM, et al. Incidence and outcomes of contrast-induced nephropathy after computed tomography in patients with CKD: a quality improvement report. Am J Kidney Dis. 2010;55(6):1018–25.

    Article  PubMed  Google Scholar 

  77. Murakami R, et al. Contrast-induced nephropathy in patients with renal insufficiency undergoing contrast-enhanced MDCT. Eur Radiol. 2012;22(10):2147–52.

    Article  PubMed  Google Scholar 

  78. Herts BR, et al. Probability of reduced renal function after contrast-enhanced CT: a model based on serum creatinine level, patient age, and estimated glomerular filtration rate. AJR Am J Roentgenol. 2009;193(2):494–500.

    Article  PubMed  Google Scholar 

  79. Kooiman J, et al. Meta-analysis: serum creatinine changes following contrast enhanced CT imaging. Eur J Radiol. 2012;81(10):2554–61.

    Article  PubMed  Google Scholar 

  80. Zagler A, et al. N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trials. Am Heart J. 2006;151(1):140–5.

    Article  CAS  PubMed  Google Scholar 

  81. Ratcliffe JA, et al. Prevention of contrast-induced nephropathy: a randomized controlled trial of sodium bicarbonate and N-acetylcysteine. Int J Angiol. 2009;18(4):193–7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Klima T, et al. Sodium chloride vs. sodium bicarbonate for the prevention of contrast medium-induced nephropathy: a randomized controlled trial. Eur Heart J. 2012;33(16):2071–9.

    Article  CAS  PubMed  Google Scholar 

  83. Traub SJ, et al. N-acetylcysteine plus intravenous fluids versus intravenous fluids alone to prevent contrast-induced nephropathy in emergency computed tomography. Ann Emerg Med. 2013;62(5):511–20. e25.

    Article  PubMed  Google Scholar 

  84. Briguori C, et al. Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation. 2007;115(10):1211–7.

    CAS  PubMed  Google Scholar 

  85. Chousterman BG, et al. Prevention of contrast-induced nephropathy by N-acetylcysteine in critically ill patients: different definitions, different results. J Crit Care. 2013;28(5):701–9.

    Article  CAS  PubMed  Google Scholar 

  86. Merten GJ, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate. JAMA. 2004;291(19):2328–34.

    Article  CAS  PubMed  Google Scholar 

  87. de Gonzalez AB, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169(22):2071–7.

    Article  Google Scholar 

  88. Iessi R, et al. Low-dose multidetector cT angiography in the evaluation of infrarenal aorta and peripheral arterial occlusive disease. Radiology 2012;(263):287–98.

    Google Scholar 

  89. Josephs SC, et al. Atherosclerotic peripheral vascular disease symposium II: vascular magnetic resonance and computed tomographic imaging. Circulation. 2008;118(25):2837–44.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mell M, et al. Clinical utility of time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography for infrageniculate arterial occlusive disease. J Vasc Surg. 2007;45(3):543–8.

    Article  PubMed  Google Scholar 

  91. Christie A, Chandramohan S, Roditi G. Comprehensive MRA of the lower limbs including high-resolution extended-phase infra-inguinal imaging with gadobenate dimeglumine: initial experience with inter-individual comparison to the blood-pool contrast agent gadofosveset trisodium. Clin Radiol. 2013;68(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  92. Kassamali RH, et al. A comparative analysis of noncontrast flow-spoiled versus contrast-enhanced magnetic resonance angiography for evaluation of peripheral arterial disease. Diagn Interv Radiol. 2013;19(2):119–25.

    PubMed  Google Scholar 

  93. van den Bosch HC, et al. Peripheral arterial occlusive disease: 3.0-T versus 1.5-T MR angiography compared with digital subtraction angiography. Radiology. 2013;266(1):337–46.

    Article  PubMed  Google Scholar 

  94. Visser K, Hunink MG. Peripheral arterial disease: gadolinium-enhanced MR angiography versus color-guided duplex US--a meta-analysis. Radiology. 2000;216(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  95. Burbelko M, et al. Comparison of contrast-enhanced multi-station MR angiography and digital subtraction angiography of the lower extremity arterial disease. J Magn Reson Imaging. 2013;37(6):1427–35.

    Article  PubMed  Google Scholar 

  96. Kreitner K, et al. Diabetes and peripheral arterial occlusive disease: prospective comparison of contrast-enhanced three-dimensional MR angiography with conventional digital subtraction angiography. Am J Roentol. 1999;174:171–9.

    Article  Google Scholar 

  97. Owen AR, et al. Critical lower-limb ischemia: the diagnostic performance of dual-phase injection MR angiography (including high-resolution distal imaging) compared with digital subtraction angiography. J Vasc Interv Radiol. 2009;20(2):165–72.

    Article  PubMed  Google Scholar 

  98. Hansmann J, et al. Impact of time-resolved MRA on diagnostic accuracy in patients with symptomatic peripheral artery disease of the calf station. AJR Am J Roentgenol. 2013;201(6):1368–75.

    Article  PubMed  Google Scholar 

  99. Sam AD, et al. Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg. 2003;38(2):313–8.

    Article  PubMed  Google Scholar 

  100. Kuo PH, et al. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007;242(3):647–9.

    Article  PubMed  Google Scholar 

  101. Ledneva E, et al. Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology. 2009;250(3):618–28.

    Article  PubMed  Google Scholar 

  102. Sandowski EA, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–57.

    Article  Google Scholar 

  103. Cowper SE. Nephrogenic systemic fibrosis [ICNSFR Website], 2001–2013. Available at http://www.icnsfr.org. Accessed 09/01/2014.

  104. Gutzeit A, et al. ECG-triggered non-contrast-enhanced MR angiography (TRANCE) versus digital subtraction angiography (DSA) in patients with peripheral arterial occlusive disease of the lower extremities. Eur Radiol. 2011;21(9):1979–87.

    Article  PubMed  Google Scholar 

  105. Hodnett PA, et al. Peripheral arterial disease in a symptomatic diabetic population: prospective comparison of rapid unenhanced MR angiography (MRA) with contrast-enhanced MRA. AJR Am J Roentgenol. 2011;197(6):1466–73.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Klasen J, et al. Nonenhanced ECG-gated quiescent-interval single-shot MRA (QISS-MRA) of the lower extremities: comparison with contrast-enhanced MRA. Clin Radiol. 2012;67(5):441–6.

    Article  CAS  PubMed  Google Scholar 

  107. Diop AD, et al. Unenhanced 3D turbo spin-echo MR angiography of lower limbs in peripheral arterial disease: a comparative study with gadolinium-enhanced MR angiography. AJR Am J Roentgenol. 2013;200(5):1145–50.

    Article  PubMed  Google Scholar 

  108. von Kalle T, et al. Contrast-enhanced MR angiography (CEMRA) in peripheral arterial occlusive disease (PAOD): conventional moving table technique versus hybrid technique. RoFo. 2004;176(1):62–9.

    Article  Google Scholar 

  109. Gerretsen SC, et al. Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for MR angiography of peripheral arteries. Radiology. 2010;255(3):988–1000.

    Article  PubMed  Google Scholar 

  110. Galizia MS, et al. Improved characterization of popliteal aneurysms using gadofosveset-enhanced equilibrium phase magnetic resonance angiography. J Vasc Surg. 2013;57(3):837–41.

    Article  PubMed  Google Scholar 

  111. Tarvis DR, et al. Bleeding and vascular complications at the femoral access site following percutaneous coronary intervention (PCI): an evaluation of hemostasis strategies. J Invasive Cardiol. 2012;24(7):2–8.

    Google Scholar 

  112. Tiroch KA, et al. Risk predictors of retroperitoneal hemorrhage following percutaneous coronary intervention. Am J Cardiol. 2008;102(11):1473–6.

    Article  PubMed  Google Scholar 

  113. Alvarez-Tostado JA, et al. The brachial artery: a critical access for endovascular procedures. J Vasc Surg. 2009;49(2):378–85. discussion 385.

    Article  PubMed  Google Scholar 

  114. Wheatley BJ, et al. Complication rates for percutaneous lower extremity arterial antegrade access. Arch Surg. 2011;146(4):432–5.

    Article  PubMed  Google Scholar 

  115. Fitts J, et al. Fluoroscopy-guided femoral artery puncture reduces the risk of PCI-related vascular complications. J Interv Cardiol. 2008;21(3):273–8.

    Article  PubMed  Google Scholar 

  116. Seto AH, et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (Femoral Arterial Access With Ultrasound Trial). JACC Cardiovasc Interv. 2010;3(7):751–8.

    Article  PubMed  Google Scholar 

  117. Weiner MM, Geldard P, Mittnacht AJ. Ultrasound-guided vascular access: a comprehensive review. J Cardiothorac Vasc Anesth. 2013;27(2):345–60.

    Article  PubMed  Google Scholar 

  118. Díaz LP, et al. Assessment of CO2 arteriography in arterial occlusive disease of the lower extremities. J Vasc Interv Radiol. 2000;11(2):163–9.

    Article  PubMed  Google Scholar 

  119. Spinosa DJ, et al. Lower extremity arteriography with use of iodinated contrast material or gadodiamide to supplement CO2 angiography in patients with renal insufficiency. J Vasc Interv Radiol. 2000;11(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  120. Dowling K, et al. Safety of limited supplemental iodinated contrast administration in azotemic patients undergoing CO2 angiography. J Endovasc Ther. 2003;10(2):312–6.

    PubMed  Google Scholar 

  121. Arthurs ZM, et al. Evaluation of peripheral atherosclerosis: a comparative analysis of angiography and intravascular ultrasound imaging. J Vasc Surg. 2010;51(4):933–8. discussion 939.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kusuyama T, Iida H, Mitsui H. Intravascular ultrasound complements the diagnostic capability of carbon dioxide digital subtraction angiography for patients with allergies to iodinated contrast medium. Catheter Cardiovasc Interv. 2012;80(6):E82–6.

    Article  PubMed  Google Scholar 

  123. Irshad K, et al. Early clinical experience with color three-dimensional intravascular ultrasound in peripheral interventions. J Endovasc Ther. 2001;8(4):329–38.

    Article  CAS  PubMed  Google Scholar 

  124. Ikeno F, et al. Mechanism of luminal gain with plaque excision in atherosclerotic coronary and peripheral arteries: assessment by histology and intravascular ultrasound. J Interv Cardiol. 2007;20(2):107–13.

    Article  PubMed  Google Scholar 

  125. Hassan AH, et al. Mechanism of lumen gain with a novel rotational aspiration atherectomy system for peripheral arterial disease: examination by intravascular ultrasound. Cardiovasc Revasc Med. 2010;11(3):155–8.

    Article  PubMed  Google Scholar 

  126. Niwamae N, et al. Intravascular ultrasound analysis of correlation between plaque-morphology and risk factors in peripheral arterial disease. Ann Vasc Dis. 2009;2(1):27–33.

    Article  PubMed  PubMed Central  Google Scholar 

  127. van der Vaart MG, et al. Application of PET/SPECT imaging in vascular disease. Eur J Vasc Endovasc Surg. 2008;35(5):507–13.

    Article  PubMed  Google Scholar 

  128. Cavalcanti Filho JL, et al. PET/CT and vascular disease: current concepts. Eur J Radiol. 2011;80(1):60–7.

    Article  PubMed  Google Scholar 

  129. Burchert W, et al. Oxygen-15-water PET assessment of muscular blood flow in peripheral vascular disease. J Nucl Med. 1997;38(1):93–8.

    CAS  PubMed  Google Scholar 

  130. Kalliokoski KK, et al. Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data. Eur J Nucl Med. 2001;28(4):450–6.

    Article  CAS  PubMed  Google Scholar 

  131. Rudd JH, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49(6):871–8.

    Article  PubMed  Google Scholar 

  132. Rudd JH, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging. 2009;2(2):107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Myers KS, et al. Correlation between arterial FDG uptake and biomarkers in peripheral artery disease. JACC Cardiovasc Imaging. 2012;5(1):38–45.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Pande RL, et al. Impaired skeletal muscle glucose uptake by [18F]fluorodeoxyglucose-positron emission tomography in patients with peripheral artery disease and intermittent claudication. Arterioscler Thromb Vasc Biol. 2011;31(1):190–6.

    Article  CAS  PubMed  Google Scholar 

  135. Jaffer FA, Libby P, Weissleder R. Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol. 2006;47(7):1328–38.

    Article  CAS  PubMed  Google Scholar 

  136. Jaffer FA, et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation. 2007;115(17):2292–8.

    Article  CAS  PubMed  Google Scholar 

  137. Roivainen A, et al. Whole-body distribution and metabolism of [N-methyl-11C](R)-1-(2-chlorophenyl)-N-(1-methylpropyl)-3-isoquinolinecarboxamide in humans; an imaging agent for in vivo assessment of peripheral benzodiazepine receptor activity with positron emission tomography. Eur J Nucl Med Mol Imaging. 2009;36(4):671–82.

    Article  CAS  PubMed  Google Scholar 

  138. Strauss HW, et al. PET and PET–CT imaging in the diagnosis and characterization of atheroma. Int Congr Ser. 2004;1264:95–104.

    Article  Google Scholar 

  139. Winter PM, et al. Molecular imaging of angiogenic therapy in peripheral vascular disease with alphanubeta3-integrin-targeted nanoparticles. Magn Reson Med. 2010;64(2):369–76.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tomita, T.M., Kibbe, M.R. (2017). Diagnostic Approach to Chronic Critical Limb Ischemia. In: Dieter, R., Dieter, Jr, R., Dieter, III, R., Nanjundappa, A. (eds) Critical Limb Ischemia. Springer, Cham. https://doi.org/10.1007/978-3-319-31991-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31991-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31989-6

  • Online ISBN: 978-3-319-31991-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics