Skip to main content

Basic Science of Wound Healing

  • Chapter
  • First Online:
Book cover Critical Limb Ischemia

Abstract

Normally the process of wound healing is a highly complex but well-orchestrated sequence of cellular and biochemical events that results in the reestablishment of tissue integrity and function. As the metabolic activity at the site of tissue injury intensifies, there is a high demand for nutrients and oxygen to support the repair processes. Oxygen is required for the proper synthesis and assembly of collagen and other extracellular matrix elements. In contrast, in pathologic states such as diabetic, pressure, and venous stasis ulcers, there is a significant reduction in the availability of oxygen that results in chronic, non-healing wounds. The adverse ischemic microenvironment in these chronic ulcers drives an intense and prolonged inflammatory process resulting in extensive matrix destruction, infection, and a continuous non-healing state. Once the inflammation and infection are controlled, the oxygen supply can be restored to the ulcer site and tissue repair can proceed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol. 1994;130:489–93.

    Article  CAS  PubMed  Google Scholar 

  2. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283–9.

    Article  CAS  PubMed  Google Scholar 

  3. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care. 2013;2(5):215–24.

    Article  Google Scholar 

  4. Finnson KW, McLean S, Di Guglielmo GM, Philip A. Dynamics of transforming growth factor beta signaling in wound healing and scarring. Adv Wound Care. 2013;2(5):195–214.

    Article  Google Scholar 

  5. Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen. 2014;22(5):569–78.

    Google Scholar 

  6. Robson MC. The role of growth factors in the healing of chronic wounds. Wound Repair Regen. 1997;5(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  7. Cho J, Mosher DF. Role of fibronectin assembly in platelet thrombus formation. J Thromb Haemost. 2006;4(7):1461–9.

    Article  CAS  PubMed  Google Scholar 

  8. Rabhi-Sabile S, de Romeuf C, Pidard D. On the mechanism of plasmin-induced aggregation of human platelets: implication of secreted von Willebrand factor. Thromb Haemost. 1998;79(6):1191–8.

    CAS  PubMed  Google Scholar 

  9. Ono Y, Kurano M, Ohkawa R, Yokota H, Igarashi K, Aoki J, et al. Sphingosine 1-phosphate release from platelets during clot formation: close correlation between platelet count and serum sphingosine 1-phosphate concentration. Lipids Health Dis. 2013;12:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gailit J, Clark RA. Wound repair in the context of extracellular matrix. Curr Opin Cell Biol. 1994;6(5):717–25.

    Article  CAS  PubMed  Google Scholar 

  11. Song C. Hypertrophic scars and keloids in surgery: current concepts. Ann Plast Surg. 2014;73 Suppl 1:S108–18.

    CAS  PubMed  Google Scholar 

  12. Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 2014;9:157–79.

    Article  CAS  PubMed  Google Scholar 

  13. Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A. 1991;88(15):6642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002;7:d793–807.

    Article  CAS  PubMed  Google Scholar 

  15. Robson MC, Phillip LG, Cooper DM, Lyle WG, Robson LE, Odom L, et al. Safety and effect of transforming growth factor-beta(2) for treatment of venous stasis ulcers. Wound Repair Regen. 1995;3(2):157–67.

    Article  CAS  PubMed  Google Scholar 

  16. Hirshberg J, Coleman J, Marchant B, Rees RS. TGF-beta3 in the treatment of pressure ulcers: a preliminary report. Adv Skin Wound Care. 2001;14(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  17. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Griffin GL, Senior RM, et al. Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J Cell Biol. 1989;109(1):429–40.

    Article  CAS  PubMed  Google Scholar 

  18. Bennett NT, Schultz GS. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg. 1993;165(6):728–37.

    Article  CAS  PubMed  Google Scholar 

  19. Bennett NT, Schultz GS. Growth factors and wound healing: Part II. Role in normal and chronic wound healing. Am J Surg. 1993;166(1):74–81.

    Article  CAS  PubMed  Google Scholar 

  20. Tilan JU, Everhart LM, Abe K, Kuo-Bonde L, Chalothorn D, Kitlinska J, et al. Platelet neuropeptide Y is critical for ischemic revascularization in mice. FASEB J. 2013;27(6):2244–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuo LE, Zukowska Z. Stress, NPY and vascular remodeling: implications for stress-related diseases. Peptides. 2007;28(2):435–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    Article  CAS  PubMed  Google Scholar 

  23. Guo R-F, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52.

    Article  CAS  PubMed  Google Scholar 

  24. Tschaikowsky K, Sittl R, Braun GG, Hering W, Rügheimer E. Increased fMet-Leu-Phe receptor expression and altered superoxide production of neutrophil granulocytes in septic and posttraumatic patients. Clin Investig. 1993;72(1):18–25.

    Article  PubMed  Google Scholar 

  25. Matsukawa A, Yoshinaga M. Sequential generation of cytokines during the initiative phase of inflammation, with reference to neutrophils. Inflamm Res. 1998;47 Suppl 3:S137–44.

    Article  CAS  PubMed  Google Scholar 

  26. Moor AN, Vachon DJ, Gould LJ. Proteolytic activity in wound fluids and tissues derived from chronic venous leg ulcers. Wound Repair Regen. 2009;17(6):832–9.

    Article  PubMed  Google Scholar 

  27. Diegelmann RF. Excessive neutrophils characterize chronic pressure ulcers. Wound Repair Regen. 2003;11:490–5.

    Article  PubMed  Google Scholar 

  28. Nwomeh BC, Liang HX, Diegelmann RF, Cohen IK, Yager DR. Dynamics of the matrix metalloproteinases MMP-1 and MMP-8 in acute open human dermal wounds. Wound Repair Regen. 1998;6:127–34.

    Article  CAS  PubMed  Google Scholar 

  29. Nwomeh BC, Liang HX, Cohen IK, Yager DR. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J Surg Res. 1999;81:189–95.

    Article  CAS  PubMed  Google Scholar 

  30. Yager DR, Zhang LY, Liang HX, Diegelmann RF, Cohen IK. Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol. 1996;107:743–8.

    Article  CAS  PubMed  Google Scholar 

  31. Diegelmann RF, Cohen IK, Kaplan AM. The role of macrophages in wound repair: a review. Plast Reconstr Surg. 1981;68:107–13.

    Article  CAS  PubMed  Google Scholar 

  32. Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound healing. Adv Wound Care. 2012;1(1):10–6.

    Article  Google Scholar 

  33. Novak ML, Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol. 2013;183(5):1352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol. 2011;51:267–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cruse JM, Lewis RE, Dilioglou S, Roe DL, Wallace WF, Chen RS. Review of immune function, healing of pressure ulcers, and nutritional status in patients with spinal cord injury. J Spinal Cord Med. 2000;23(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  36. Shi L, Carson D. Collagenase Santyl ointment: a selective agent for wound debridement. J Wound Ostomy Continence Nurs. 2009;36(6 Suppl):S12–6.

    Article  PubMed  Google Scholar 

  37. Demidova-Rice TN, Durham JT, Herman IM. Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing. Adv Wound Care. 2012;1(1):17–22.

    Article  Google Scholar 

  38. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Clark RA, An JQ, Greiling D, Khan A, Schwarzbauer JE. Fibroblast migration on fibronectin requires three distinct functional domains. J Invest Dermatol. 2003;121:695–705.

    Article  CAS  PubMed  Google Scholar 

  40. Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol. 2008;40(6–7):1334–47.

    Article  CAS  PubMed  Google Scholar 

  41. Castilla DM, Liu Z-J, Velazquez OC. Oxygen: implications for wound healing. Adv Wound Care. 2012;1(6):225–30.

    Article  Google Scholar 

  42. Chen L, Endler A, Shibasaki F. Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors. Exp Mol Med. 2009;41(12):849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15(4):255–73.

    Article  CAS  PubMed  Google Scholar 

  44. Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther. 2014;349(2):209–20.

    Article  PubMed  Google Scholar 

  45. Ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004;29(5):265–73.

    Article  PubMed  Google Scholar 

  46. Lanning DA, Nwomeh BC, Montante SJ, Yager DR, Diegelmann RF, Haynes JH. TGF-beta1 alters the healing of cutaneous fetal excisional wounds. J Pediatr Surg. 1999;34:695–700.

    Article  CAS  PubMed  Google Scholar 

  47. Mast BA, Diegelmann RF, Krummel TM, Cohen IK. Scarless wound healing in the mammalian fetus. Surg Gynecol Obstet. 1992;174(5):441–51.

    CAS  PubMed  Google Scholar 

  48. Frantz FW, Diegelmann RF, Mast BA, Cohen IK. Biology of fetal wound healing: collagen biosynthesis during dermal repair. J Pediatr Surg. 1992;27:945–8. discussion 949.

    Article  CAS  PubMed  Google Scholar 

  49. Goldberg SR, McKinstry RP, Sykes V, Lanning DA. Rapid closure of midgestational excisional wounds in a fetal mouse model is associated with altered transforming growth factor-beta isoform and receptor expression. J Pediatr Surg. 2007;42(6):966–71. discussion 971–973.

    Article  PubMed  Google Scholar 

  50. Gamelli R, He L. Incisional wound healing: model and analysis of wound breaking strength. In: DiPietro LA, editor. Wound healing: methods and protocols. Totowa: Humana Press; 2003. p. 37–54.

    Chapter  Google Scholar 

  51. Kavalukas SL, Barbul A. Nutrition and wound healing: an update. Plast Reconstr Surg. 2011;127 Suppl 1:38S–43.

    Article  CAS  PubMed  Google Scholar 

  52. Sen CK, Khanna S, Gordillo G, Bagchi D, Bagchi M, Roy S. Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm. Ann N Y Acad Sci. 2002;957:239–49.

    Article  CAS  PubMed  Google Scholar 

  53. Howard MA, Asmis R, Evans KK, Mustoe TA. Oxygen and wound care: a review of current therapeutic modalities and future direction. Wound Repair Regen. 2013;21(4):503–11.

    Article  PubMed  Google Scholar 

  54. Clore JN, Cohen IK, Diegelmann RF. Quantitation of collagen types I and III during wound healing in rat skin. Proc Soc Exp Biol Med. 1979;161:337–40.

    Article  CAS  PubMed  Google Scholar 

  55. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45 Suppl S:S5–67.

    Google Scholar 

  56. Mayfield JA, Reiber GE, Maynard C, Czerniecki JM, Caps MT, Sangeorzan BJ. Survival following lower-limb amputation in a veteran population. J Rehabil Res Dev. 2001;38(3):341–5.

    CAS  PubMed  Google Scholar 

  57. Stone PA, Flaherty SK, Aburahma AF, Hass SM, Jackson JM, Hayes JD, et al. Factors affecting perioperative mortality and wound-related complications following major lower extremity amputations. Ann Vasc Surg. 2006;20(2):209–16.

    Article  PubMed  Google Scholar 

  58. Bates B, Stineman MG, Reker DM, Kurichi JE, Kwong PL. Risk factors associated with mortality in veteran population following transtibial or transfemoral amputation. J Rehabil Res Dev. 2006;43(7):917–28.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cruz CP, Eidt JF, Capps C, Kirtley L, Moursi MM. Major lower extremity amputations at a Veterans Affairs hospital. Am J Surg. 2003;186(5):449–54.

    Article  PubMed  Google Scholar 

  60. Aulivola B, Hile CN, Hamdan AD, Sheahan MG, Veraldi JR, Skillman JJ, et al. Major lower extremity amputation: outcome of a modern series. Arch Surg Chic Ill 1960. 2004;139(4):395–9; discussion 399.

    Google Scholar 

  61. Niinikoski JHA. Clinical hyperbaric oxygen therapy, wound perfusion, and transcutaneous oximetry. World J Surg. 2004;28(3):307–11.

    Article  PubMed  Google Scholar 

  62. Rich K. Transcutaneous oxygen measurements: implications for nursing. J Vasc Nurs. 2001;19(2):55–9. quiz 60–61.

    Article  CAS  PubMed  Google Scholar 

  63. Fife CE, Smart DR, Sheffield PJ, Hopf HW, Hawkins G, Clarke D. Transcutaneous oximetry in clinical practice: consensus statements from an expert panel based on evidence. Undersea Hyperb Med. 2009;36(1):43–53.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goldberg, S.R., Diegelmann, R.F. (2017). Basic Science of Wound Healing. In: Dieter, R., Dieter, Jr, R., Dieter, III, R., Nanjundappa, A. (eds) Critical Limb Ischemia. Springer, Cham. https://doi.org/10.1007/978-3-319-31991-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31991-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31989-6

  • Online ISBN: 978-3-319-31991-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics