Skip to main content
Book cover

River Algae pp 159–195Cite as

The Spatio-Temporal Development of Macroalgae in Rivers

  • Chapter
  • First Online:

Abstract

In shallow clear rivers macroalgae are a diverse component of biota and especially easily recognizable and easily accessible organisms, facilitating studies of spatial and temporal variation across environmental gradients. Their macroscopic form and appearance makes field studies of their limits and requirements in space and time possible. Some taxa occupy spatially restricted microhabitats, particularly in headwaters, while others are abundant along the length of a river. Spatial variation can occur within a site, between different stream types, or across wide regions. Temporal variation in growth or colonization by a particular species at a particular site can be driven by seasonal changes in discharge and nutrients, which may lead to regular or irregular temporal sequences. More stable temporal dynamics are observed in taxa with high adaptive capacities to resist physical disturbances or to re-establish quickly after floods. We examined the most common soft-bodied macroscopic algae (SBM) from two geographically extended datasets of temperate streams, from alpine to lowland regions in Austria and a shallower altitudinal gradient of southeastern New York State. Morphological and functional characters, combined with key environmental variables (based on median and multivariate statistics), are used to analyze general trends and causalities for species-specific spatial and temporal niches. These results provide strong arguments in favor of using a combination of on-site studies of growth form and phenology, with ecophysiological and molecular studies in the lab to improve our understanding of the factors regulating stream macroalgae occurrence in space and time in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen JD (1995) Stream ecology. Structure and function of running waters. Chapman and Hall, London

    Book  Google Scholar 

  • Algarte VM, Siqueira NS, Rodrigues L (2013) Desiccation and recovery of periphyton biomass and density in a subtropical lentic ecosystem. Acta Sci Biol Sci 35:311–318

    Article  Google Scholar 

  • Bautista ANI, Necchi O Jr (2007) Photoacclimation in three species of red algae. Brazil J Plant Physiol 19:23–34

    Article  CAS  Google Scholar 

  • Becker B, Marin B (2009) Steptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004

    Article  CAS  Google Scholar 

  • Berrendero E, Perona E, Matteo P (2008) Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 58:447–460

    Article  CAS  Google Scholar 

  • Biggs BJF (1996) Patterns in benthic algae of streams. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 31–56

    Chapter  Google Scholar 

  • Biggs BJF, Stevenson RJ, Lowe RL (1998) A habitat matrix conceptual model of periphyton. Arch Hydrobiol 143:21–56

    Google Scholar 

  • Blum JL (1956) The ecology of river algae. Bot Rev 22:291–341

    Article  CAS  Google Scholar 

  • Cantonati M, Gerecke R, Bertuzzi E (2006) Springs of the Alps—sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562:59–96

    Article  CAS  Google Scholar 

  • Cantonati M, Rott E, Spitale D et al (2012) Are benthic algae related to spring types? Freshw Sci 31:481–498

    Article  Google Scholar 

  • Caron DA, Countway PD (2009) Hypotheses on the role of the protistan rare biosphere in a changing world. Aquat Microb Ecol 57:227–238

    Article  Google Scholar 

  • Casamatta DA, Gomez SR, Johansen JR (2006) Rexia erecta gen. et sp. nov. and Capsosira lowei sp. nov., two newly described cyanobacterial taxa from the Great Smoky Mountains National Park (USA). Hydrobiologia 185:13–26

    Article  Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2012) Cyanobacterial responses to UV radiation. In: Whitton BA (ed) Ecology of Cyanobacteria II. Their diversity in space and time. Springer, New York, pp 562–591

    Google Scholar 

  • DeNicola DN, Hoagland KD (1996) Effects of solar spectral irradiance (visible to UV) on a prairie stream epilithic community. J N Am Benthol Soc 15:155–169

    Article  Google Scholar 

  • Dodds WK, Gudder DA (1992) The ecology of Cladophora. J Phycol 28:415–426

    Article  Google Scholar 

  • Eloranta P, Kwandrans J (2012) Illustrated guidebook to common freshwater red algae. Polish Academy of Sciences, Krakow, Poland

    Google Scholar 

  • Ensminger I, Förster J, Hagen C et al (2005) Plasticity and acclimation to light reflected in temporal and spatial changes of small-scale macroalgal distribution in a stream. J Exp Bot 56:2047–2058

    Article  CAS  Google Scholar 

  • Entwisle TJ, Sonneman J, Lewis SH (1997) Freshwater algae in Australia: a guide to conspicuous genera. Sainty & Associates, Potts Point

    Google Scholar 

  • Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784

    Article  Google Scholar 

  • Förster J, Gutowski A, Schaumburg J (2004) Defining types of running waters in Germany using benthic algae: a prerequisite for monitoring according to the Water Framework Directive. J Appl Phycol 16:407–418

    Article  Google Scholar 

  • Frissell CA, Liss WJ, Warren CE et al (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manage 10:199–214

    Article  Google Scholar 

  • Furey PC, Lowe RL, Power ME et al (2012) Midges, Cladophora, and epiphytes: shifting interactions through succession. Freshw Sci 31:93–107

    Article  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Gibson MT, Whitton BA (1987) Hairs, phosphatase activity and environmental chemistry in Stigeoclonium, Chaetophora and Draparnaldia (Chaetophorales). Brit Phycol J 22:11–22

    Article  Google Scholar 

  • Graham JM, Graham LE (1984) Growth and reproduction of Bangia atropurpurea (Roth) C. Ag. (Rhodophyta) from the Laurentian Great Lakes. Aquat Bot 28:317–331

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grimm N (1995) Why link species to ecosystems? In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman and Hall, New York, pp 5–15

    Chapter  Google Scholar 

  • Grimm NB, Fisher SG (1989) Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J N Am Benthol Soc 8:293–307

    Article  Google Scholar 

  • Gutowski A, Förster J (2009) Benthische Algen ohne Diatomeen und Characeen. Bestimmungshilfe Landesamt für Natur, Umwelt und Verbraucherschutz-Arbeitsblatt 9. Nordrhein-Westfahlen, Recklingshausen.

    Google Scholar 

  • Hambrook JA, Sheath RG (1991) Reproductive ecology of the fresh water red alga Batrachospermum boryanum Sirodot in a temperate headwater stream. Hydrobiologia 218:233–246

    Article  Google Scholar 

  • Hieber M, Robinson CT, Pushforth SR et al (2001) Algal communities associated with different alpine stream types. Arct Antarct Alp Res 33:447–456

    Article  Google Scholar 

  • Holmes NTH, Whitton BA (1981) Phytobenthos of the River Tees and its tributaries. Freshw Biol 11:139–163

    Article  Google Scholar 

  • John D, Whitton BA, Brook AJ (2011) The freshwater algal flora of the British Isles, 2nd edn. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Kawecka B (1980) Sessile algae in European mountain streams. 1. The ecological characteristics of communities. Acta Hydrobiol 22:361–420

    CAS  Google Scholar 

  • Kawecka B (1981) Sessile algae in European mountain streams. 2. Taxonomy and autecology. Acta Hydrobiol 23:17–46

    Google Scholar 

  • Klaveness D, Lindstrøm EA (2011) Hydrurus foetidus (Chromista, Chrysophyceae): a large freshwater chromophyte alga in laboratory culture. Phycol Res 59:105–112112

    Article  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota III: Heterocytous genera, Süsswasserflora von Mitteleuropa, 19/3. Springer Spektrum, Heidelberg

    Book  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota I: Chroococcales, Süsswasserflora von Mitteleuropa, 19/1. G. Fischer Verlag, Stuttgart

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota II: Oscillatoriales, Süsswasserflora von Mitteleuropa, 19/2. G. Fischer Verlag, Stuttgart

    Google Scholar 

  • Lindstrøm EA, Johansen SW, Saloranta T (2004) Periphyton in running waters—long-term studies of natural variation. Hydrobiologia 521:63–86

    Article  Google Scholar 

  • Livingstone DA, Whitton BA (1984) Water chemistry and phosphatase activity of the blue-green alga Rivularia in upper Teesdale streams. J Ecol 72:405–421

    Article  CAS  Google Scholar 

  • Loza V, Perona E, Mateo P (2013) Molecular fingerprinting of cyanobacteria from river biofilms as a water quality monitoring tool. Appl Environ Microbiol 79:1459–1472

    Article  CAS  Google Scholar 

  • McNeely C, Power ME (2007) Spatial variation in caddisfly grazing regimes within a northern California watershed. Ecology 88:2609–2619

    Article  Google Scholar 

  • Minckley WL, Tindall DR (1963) Ecology of Batrachospermum sp. (Rhodophyta) in Doe Run, Meade County, Kentucky. B Torrey Bot Club 90:391–400

    Article  Google Scholar 

  • Moog O, Schmidt-Kloiber A, Ofenböck T et al (2004) Does the ecoregion approach support the typological demands of the EU Water Framework Directive? Hydrobiologia 516:21–33

    Article  Google Scholar 

  • Morrison MO, Sheath RG (1985) Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia 24:129–145

    Article  Google Scholar 

  • Necchi O Jr (1997) Microhabitat and plant structure of Batrachospermum (Batrachospermales, Rhodophyta) populations in four streams of São Paulo State, southeastern Brazil. Phycol Res 45:39–45

    Article  Google Scholar 

  • Necchi O Jr, Alves AHS (2005) Photosynthetic characteristics of the freshwater red alga Batrachospermum delicatulum (Skuja) Necchi & Entwisle. Acta Bot Brasil 19:125–137

    Article  Google Scholar 

  • Necchi O Jr, Vis ML (2005) Reproductive ecology of the freshwater red alga Batrachospermum delicatulum (Batrachospermales, Rhodophyta) in three tropical streams. Phycol Res 53:194–200

    Article  Google Scholar 

  • OBrien PJ, Wehr JD (2010) Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient. Hydrobiologia 657:89–105

    Article  CAS  Google Scholar 

  • Ott DW, Brown RM Jr (1974) Developmental cytology of the genus Vaucheria I. organisation of the vegetative filament. Brit Phycol J 9:111–126

    Article  Google Scholar 

  • Parker BC, Samsel GE, Prescott GW (1973) Comparison of microhabitats of macroscopic subalpine stream algae. Am Midl Nat 90:143–153

    Article  Google Scholar 

  • Peterson CG, Grimm NB (1992) Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. J N Am Benthol Soc 11:20–36

    Article  Google Scholar 

  • Pfister P (1993) Seasonality of macroalgal distribution pattern within the reach of a gravel stream (Isar, Tyrol, Austria). Arch Hydrobiol 80:39–51

    Google Scholar 

  • Pfister P, Pipp E (2013) Part A3, Phytobenthos. In: Mauthner-Weber R (ed) Guidance on the monitoring of the biological quality elements. Federal Ministry of Agriculture, Environment and Water Management, Vienna, pp 1–92

    Google Scholar 

  • Power ME (1992) Hydrologic and trophic controls of seasonal algal blooms in northern California rivers. Arch Hydrobiol 125:385–410

    Google Scholar 

  • Pringle CM (1996) Atyid shrimps (Decapoda: Atyidae) influence the spatial heterogeneity of algal communities over different scales in tropical montane streams, Puerto Rico. Freshw Biol 35:125–140

    Article  Google Scholar 

  • Rott E (1991) Methodological aspects and perspectives of the use of periphyton for monitoring and protecting rivers. In: Whitton BA, Friedrich G, Rott E (eds) The use of algae for monitoring rivers. Inst Bot Univ Innsbruck, Innsbruck, pp 9–16

    Google Scholar 

  • Rott E, Pfister P (1988) Natural epilithic algal communities in fast-flowing mountain streams and rivers and some man-induced changes. Verh Int Ver Limnol 23:1320–1324

    Google Scholar 

  • Rott E, Schneider SC (2014) A comparison of ecological optima of soft-bodied benthic algae in Norwegian and Austrian rivers and consequences for river monitoring in Europe. Sci Total Environ 475:180–186

    Article  CAS  Google Scholar 

  • Rott E, Walser L, Kegele M (2000) Ecophysiological aspects of macroalgal seasonality in a gravel stream in the Alps (River Isar, Austria). Verh Int Ver Limnol 27:1622–1625

    CAS  Google Scholar 

  • Rott E, Cantonati M, Füreder L et al (2006a) Benthic algae in high altitude streams of the Alps—a neglected component of aquatic biota. Hydrobiologia 562:195–216

    Google Scholar 

  • Rott E, Füreder L, Schütz C et al (2006b) A conceptual model for niche separation of biota within an extreme stream microhabitat. Verh Int Ver Limnol 29:2321–2323

    Google Scholar 

  • Rott E, Gesierich D, Binder N (2010a) Lebensraumtypen und Diversitätsgradienten lotischer Algen in einem Gletschereinzugsgebiet. In: Koch EM, Erschbamer B (eds) Glaziale und periglaziale Lebensräume im Raum Obergurgl. Innsbruck Univ Press, Innsbruck, pp 203–212, 287–296, (In German with English abstract)

    Google Scholar 

  • Rott E, Holzinger A, Gesierich D et al (2010b) Cell morphology, ultrastructure and calcification pattern of Oocardium stratum, a peculiar lotic desmid. Protoplasma 243:39–50

    Article  CAS  Google Scholar 

  • Rott E, Hotzy R, Cantonati M et al (2012) Calcification types of Oocardium stratum Nägeli and microhabitat conditions in springs of the Alps. Freshw Sci 31:610–624

    Article  Google Scholar 

  • Schneider S, Lindstrøm EA (2009) Bioindication in Norwegian rivers using non-diatomaceous benthic algae: the Acidification Index Periphyton (AIP). Ecol Indic 9:1201–1211

    Article  Google Scholar 

  • Sheath RG, Cole KM (1992) Biogeography of stream macroalgae in North America. J Phycol 28:448–460

    Article  Google Scholar 

  • Sheath RG, Hambrook JA (1988) Mechanical adaptations to flow in freshwater red algae. J Phycol 24:107–111

    Article  Google Scholar 

  • Sheath RG, Hambrook JA (1990) Freshwater ecology. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge Univ Press, Cambridge, pp 423–453

    Google Scholar 

  • Sheath RG, Vis ML (2013) Biogeography of Freshwater Algae. eLS. John Wiley & Sons Ltd, Chichester: 0.1002/9780470015902.a0003279.pub3.

    Google Scholar 

  • Sheath RG, Wehr JD (2015) Introduction to freshwater algae. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America: ecology and classification. Academic, San Diego, pp 1–11

    Chapter  Google Scholar 

  • Sobczyk A, Schyns G, Tandeau de Marsac N, Houmard J (1993) Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrix sp. PCC 7601: DNA-binding proteins and modulation by phosphorylation. EMBO J 12:997–1004

    CAS  Google Scholar 

  • Squires LE, Rushforth SR, Endsley CJ (1973) An ecological survey of the algae of Huntington Canyon, Utah. Brigham Young U Sci Bull 18:1–87

    Google Scholar 

  • Steinman AD, Mulholland PJ, Hill WR (1992) Functional responses associated with growth form in stream algae. J N Am Benthol Soc 11:229–243

    Article  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA et al (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–146

    Article  Google Scholar 

  • Tonetto AF, Branco CCZ, Peres CK (2012) Effects of irradiance and spectral composition on the establishment of macroalgae in streams in southern Brazil. Int J Limnol 48:363–370

    Article  Google Scholar 

  • Uehlinger U, Robinson CT, Hieber M et al (2010) The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657:107–121

    Article  CAS  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW et al (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Vavilova VV, Lewis WM Jr (1999) Temporal and altitudinal variations in the attached algae of mountain streams in Colorado. Hydrobiologia 390:99–106

    Article  Google Scholar 

  • Ward JV (1986) Altitudinal zonation in a Rocky Mountain stream. Arch Hydrobiol Suppl 74:133–199

    Google Scholar 

  • Ward JV, Dufford RG (1979) Longitudinal and seasonal distribution of macroinvertebrates and epilithic algae in a Colorado springbrook-pond system. Arch Hydrobiol 86:284–321

    Google Scholar 

  • Wehr JD, Sheath RG, Kociolek JP (2015) Freshwater algae of North America: ecology and classification, 2nd edn. Academic, San Diego

    Google Scholar 

  • Wehr JD, Sheath RG (2015) Habitats of freshwater algae. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America, ecology and classification. Academic Press, San Diego, pp 13–74

    Chapter  Google Scholar 

  • Whitford LA, Schumacher GJ (1963) Communities of algae in North Carolina streams and their seasonal relations. Hydrobiologia 22:133–196

    Article  Google Scholar 

  • Whitton BA (1970) Biology of Cladophora in freshwaters. Water Res 4:457–476

    Article  Google Scholar 

  • Whitton BA, Matteo P (2012) Rivulariaceae. In: Whitton BA (ed) Ecology of cyanobacteria II. Their diversity in space and time. Springer, Drodrecht, Netherlands, pp 562–591

    Chapter  Google Scholar 

  • Whitton BA, Neal C (2011) Organic phosphate in UK rivers and its relevance to algal and bryophyte surveys. Int J Limnol 47:3–10

    Article  Google Scholar 

  • Whitton BA, Grainger SL, Hawley GR et al (1991) Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb Ecol 21:85–98

    Article  CAS  Google Scholar 

  • Winter JG, Duthie HC (2000) Stream biomonitoring at an agricultural test site using benthic algae. Can J Bot 78:1319–1325

    Google Scholar 

Download references

Acknowledgements

Support for the NY portion of this work was provided by a grant from the NY State Biodiversity Research Institute to JDW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Rott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rott, E., Wehr, J.D. (2016). The Spatio-Temporal Development of Macroalgae in Rivers. In: Necchi JR, O. (eds) River Algae. Springer, Cham. https://doi.org/10.1007/978-3-319-31984-1_8

Download citation

Publish with us

Policies and ethics