Skip to main content

Blue-Green Algae (Cyanobacteria) in Rivers

  • Chapter
  • First Online:
River Algae

Abstract

This chapter presents some of the more commonly encountered lotic cyanobacterial taxa. The cyanobacteria are a group of oxygenic prokaryotes present in nearly all aquatic ecosystems. While the ecological importance of this lineage is well known, much confusion exists pertaining to their systematic and taxonomic status. In order to facilitate generic-level identification, we separate the cyanobacteria into four major groupings: the Chroococcales (coccoid cells often in a mucilaginous envelop), the Oscillatoriales (filamentous forms lacking specialized cells), the Nostocales (filamentous with inducible specialized cells), and the Stigonematales (filamentous, obligatory specialized cells coupled with cell division in multiple planes). We discuss the major genera found in each lineage, the current state of the systematics, and the broad ecological roles and niches of these taxa. Dichotomous keys and images are presented to facilitate generic identifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agardh CA (1824) Systema algarum. Literis Berlingianis, Lundae

    Google Scholar 

  • Anagnostidis K, Komárek J (1985) Modern approach to the classification system of the Cyanophytes 1: Introduction. Algol Stud 38(39):291–302

    Google Scholar 

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 1. Introduction. Algol Stud 38:291–302

    Google Scholar 

  • Anagnostidis K, Komárek J (1990) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Algol Stud 50:327–472

    Google Scholar 

  • Beaver JR, Manis EE, Loftin KA et al (2014) Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: a preliminary evaluation. Harmful Algae 36:57–62

    Article  CAS  Google Scholar 

  • Bornet E, Flahault C, (1886–1888) Revision des Nostocacees heterocystees contenues dans les principaux herbiers de France. Ann Sci Nat Bot 3: 323–381; 4, 343–373; 5, 51–129; 7, 177–262

    Google Scholar 

  • Casamatta DA, Vis ML (2004) Current velocity and nutrient level effects on the morphology of Phormidium retzii (Cyanobacteria) in artificial stream mesocosms. Algol Stud 113:87–99

    Article  Google Scholar 

  • Casamatta DA, Vis ML, Sheath RG (2003) Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii (Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. Aquat Bot 77:295–309

    Article  CAS  Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and ultrastructural characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41:421–438

    Article  CAS  Google Scholar 

  • Castenhoz RW (2001) General characteristics of the cyanobacteria. In: Boone DR, Castenhoz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York

    Google Scholar 

  • Falcon LI, Magallon S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4:777–783

    Article  CAS  Google Scholar 

  • Gardner LN (1927) New Myxophyceae from Porto Rico. Mem N Y Bot Gard 7:1–144

    Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamenflora van Deutschland, Osterreich und der Schweiz, vol XIV. Akademische, Leipzig, pp 1–1196

    Google Scholar 

  • Gold-Morgan M, Montejano G, Komárek J (1994) Freshwater epiphytic cyanoprokaryotes from Central Mexico, II. Heterogeneity of the genus Xenococcus. Arch Protistenkd 144:383–405

    Article  Google Scholar 

  • Gomont M (1892) Monographie des Oscillariees (Nostocacees homocystees). Ann Sci Nat Bot Paris Ser 15:263–368, 16, 91–264

    Google Scholar 

  • Hašler P, Štěpánková J, Špačková J, Neustupa J, Kitner M, Hekera P, Veselá J, Burian J, Poulíčková A (2008) Epipelic cyanobacteria and algae: a case study from Czech ponds. Fottea 8:133–146

    Google Scholar 

  • Hašler P, Dvořák P, Poulíčková A et al (2014) A novel genus Ammassolinea gen. nov. (Cyanobacteria) isolated from sub-tropical epipelic habitats. Fottea 14:241–248

    Google Scholar 

  • Hindák F (2008) Color atlas of cyanophytes. Veda, Bratislava, p 251

    Google Scholar 

  • Hrouzel P, Lukesová A, Mares J, Ventura S (2013) Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus. Nostoc Fottea 13:201–213

    Article  Google Scholar 

  • Karl D, Michaels A, Bergman B et al (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57(58):47–98

    Article  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota. 3. Heterocytous Genera. Süsswasserflora von Mitteleuropa, 19/3. Springer, Heidelberg

    Book  Google Scholar 

  • Komárek J, Anagnostidis K (1986) Modern approach to the classification system of cyanophytes. 2. Chroococcales. Algol Stud 43:157–226

    Google Scholar 

  • Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes. 4. Nostocales. Algol Stud 56:247–345

    Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota I: Chroococcales, Süsswasserflora von Mitteleuropa, 19/1. G. Fischer, Stuttgart

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota II: Oscillatoriales, Süsswasserflora von Mitteleuropa, 19/2. G. Fischer, Stuttgart

    Google Scholar 

  • Komárek J, Hauer T (2015) CyanoDB.cz—On-line database of cyanobacterial genera. Word-wide electronic publication, Univ. of South Bohemia and Inst. of Botany. http://www.cyanodb.cz. Accessed 4 Dec 2015

  • Komárek J, Johansen J (2015a) Coccoid cyanobacteria. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America. Ecology and classification. Academic, San Diego, pp 75–133

    Chapter  Google Scholar 

  • Komárek J, Johansen J (2015b) Filamentous cyanobacteria. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America. Ecology and classification. Academic, San Diego, pp 135–235

    Chapter  Google Scholar 

  • Komárková J, Jezberová J, Komárek O et al (2010) Variability of Chroococcus (Cyanobacteria) morphospecies with regard to phylogenetic relationships. Hydrobiologia 639:69–83

    Article  Google Scholar 

  • Kützing TF (1849) Species algarum. FA Brockhaus, Leipzig

    Google Scholar 

  • Loza V, Perona E, Mateo P (2013) Molecular fingerprinting of cyanobacteria from river biofilms as a water quality monitoring tool. Appl Environ Microbiol 79:1459–1472

    Article  CAS  Google Scholar 

  • Manoylov KM (2014) Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. J Phycol 50:409–424

    Article  Google Scholar 

  • Montejano G, Gold M, Komárek J (1993) Freshwater epiphytic cyanoprokaryotes from Central Mexico. I. Cyanocystis and xenococcus. Arch Protistenkd 143:237–247

    Article  Google Scholar 

  • Nägeli C (1849) Gattungen einzelliger Algaen. Friedrich Schulthess, Zürich

    Google Scholar 

  • Perkerson RB, Perkerson E, Casamatta DA (2010) Phylogenetic examination of the cyanobacterial genera Geitlerinema and Limnothrix (Pseudanabaenaceae) using 16S rDNA gene sequence data. Algol Stud 134:1–16

    Article  CAS  Google Scholar 

  • Perona E, Bonilla I, Mateo P (1998) Epilithic cyanobacterial communities and water quality: an alternative tool for monitoring eutrophication in the Alberche River (Spain). J Appl Phycol 10:183–191

    Article  Google Scholar 

  • Pisciotta JM, Zou Y, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS One 5:e10821

    Article  Google Scholar 

  • Prescott GW (1962) Algae of the western Great Lakes area, 2nd edn. Brown, Dubuque

    Google Scholar 

  • Rott E, Cantonati M, Füreder L et al (2006) Benthic algae in high altitude streams of the Alps—a neglected component of the aquatic biota. Hydrobiologia 562:195–216

    Article  Google Scholar 

  • Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. BMC Evol Biol 11:45–49

    Article  Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of the cyanobacteria. Kluwer, Dordrecth, pp 13–35

    Google Scholar 

  • Scott JT, Marcarelli AM (2012) Cyanobacteria in freshwater benthic environments. In: Whitton BA, Potts M (eds) The ecology of the cyanobacteria II. Springer, Dordrecht, pp 271–289

    Chapter  Google Scholar 

  • Seifert M, McGregor G, Eaglesham G et al (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6:73–80

    Article  CAS  Google Scholar 

  • Sheath RG, Cole KM (1992) Biogeography of stream macroalgae in North America. J Phycol 28:448–460

    Article  Google Scholar 

  • Sherwood AR, Carlile AL, Vaccarino MA et al (2015) Characterization of Hawaiian freshwater and terrestrial cyanobacteria reveals high diversity and numerous putative endemics. Phycol Res 63:85–92

    Article  CAS  Google Scholar 

  • Siegesmund MA, Johansen JR, Karsten U et al (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585

    Article  Google Scholar 

  • Smith GM (1950) Freshwater algae of the United States of America, 2nd edn. McGraw-Hill Book Co., New York

    Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA et al (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. Int J Syst Bacteriol 28:335–336

    Article  Google Scholar 

  • Starmach K (1966) Cyanophyta-Sinice, Glaukophyta-Glaukofity. In: Starmach K (ed) Flora Słodkowodna Polski. Państwowe Wydawnictwo Naukowe, Warszawa, pp 1–808

    Google Scholar 

  • Steinman AD, Mulholland PJ, Hill WR (1992) Functional responses associated with growth form in stream algae. J N Am Benthol Soc 11:229–243

    Article  Google Scholar 

  • Stevenson J (2014) Ecological assessments with algae: a review and synthesis. J Phycol 50:437–461

    Article  Google Scholar 

  • Stevenson RJ, Bothwell MI, Lowe RL (1996) Algal ecology: freshwater benthic ecosystems. Elsevier, San Diego

    Google Scholar 

  • Strunecký O, Komárek J, Johansen J et al (2013) Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). J Phycol 49:1167–1180

    Article  Google Scholar 

  • Tilden J (1910) Minnesota algae. The Myxophyceae of North America and adjacent regions including Central America, Greenland, Bermuda, The West Indies, and Hawaii. Bot Ser 8:1–328

    Google Scholar 

  • Whitford LA, Schumaker GJ (1969) A manual of the freshwater algae in North America. N C Agric Exp Stat Techn Bull 188:1–313

    Google Scholar 

  • Whitton BA (2005) Phylum Cyanophyta (cyanobacteria). In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal flora of the British Isles. Cambridge University Press, Cambridge, pp 25–122

    Google Scholar 

  • Whitton BA (2012a) Changing approaches to monitoring during the period of the ‘Use of Algae for Monitoring Rivers’ symposia. Hydrobiologia 695:7–16

    Article  CAS  Google Scholar 

  • Whitton BA (ed) (2012b) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht

    Google Scholar 

  • Whitton BA, Potts M (2000) The ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht

    Google Scholar 

Download references

Acknowledgments

The authors extend their thanks to Alyson R. Norwich for editorial assistance and for the line drawings in the plates. The authors extend thanks to two colleagues in particular (Jiří Komárek, University of South Bohemia, and Jeffrey Johanson, John Carroll University) for their pioneering work on cyanobacterial systematics. The authors acknowledge the works of Gardner (1927), Geitler (1932), Starmach (1966), Montejano et al. (1993), and Gold-Morgan et al. (1994), which served as inspiration and starting points for the redrawn some line drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale A. Casamatta .

Editor information

Editors and Affiliations

Cyanobacterial Terms

Akinete 

Thick-walled spore, often inducible, typically used to survive adverse environments. Frequently employed in species or generic identifications (e.g., Anabaena, Fig. 2.4a). May be apoheterocytic (develop from vegetative cells between heterocytes) or paraheterocytic (develop from vegetative cells outside of heterocytes).

Baeocytes 

Reproductive cells resulting from successive cell division within a mother cell without being liberated and enclosed by a sheath (e.g., Pleurocapsa, Fig. 2.1p).

Calyptra 

A thick covering at the tip of a trichome (e.g., Phormidium, Fig. 2.3c).

Endogloeic 

Growing within mucilage (typically of other algae, e.g., Synechoccocus, Fig. 2.1i).

Exocytes 

Reproductive cells released from apical portions of sessile, heteropolar cells (e.g., Chaemosiphon, Fig. 2.1e).

False branching 

A branch not formed as a result of cell division and does not result in multiple planes, leading to filaments which appear to pass each other (e.g., Tolypothrix, Fig. 2.4e).

Filament 

Linear arrangement of cells enveloped by a sheath (e.g., Phormidium, Fig. 2.3c).

Heterocyte 

A thick-walled cell, often inducible, used to fix atmospheric nitrogen. The size, shape, and placement are frequently employed in identifications (e.g., Anabaena, Fig. 2.4a).

Heteropolar 

Cyanobacterial “body plan” in which basal and apical regions (cells, filaments, trichomes) may be distinguished (e.g., Heteroleibleinia, Fig. 2.3h).

Hormogonia 

A desheathed, reproductive fragment of a trichome typically arising adjacent to necridic cells or heterocytes (e.g., Oscillatoria, Fig. 2.3k).

Isopolar 

Cyanobacterial “body plan” in which each end is identical (e.g., Pseudanabaena, Fig. 2.3b).

Pseudofilaments 

Row of cells incidentally arranged in a linear series, not a single physiological entity (e.g., Stichosiphon, Fig. 2.1k, l).

Pseudovagina 

Sheath for heteropolar cells or pseudofilaments open only at one apical end (e.g., Stichosiphon, Fig. 2.1k, l).

Sheath 

Mucilaginous layer that may surround trichomes or cells. Many varieties exist (e.g., thin, thick, and lamellate) and may be facultative based on environmental conditions (e.g., Microcoleus, Fig. 2.3j).

Trichome 

Filament excluding the sheath (e.g., Arthrospira, Fig. 2.3a).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casamatta, D.A., Hašler, P. (2016). Blue-Green Algae (Cyanobacteria) in Rivers. In: Necchi JR, O. (eds) River Algae. Springer, Cham. https://doi.org/10.1007/978-3-319-31984-1_2

Download citation

Publish with us

Policies and ethics