Skip to main content

Structural Variation Detection with Read Pair Information—An Improved Null-Hypothesis Reduces Bias

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9649))

  • 2022 Accesses

Abstract

Reads from paired-end and mate-pair libraries are often utilized to find structural variation in genomes, and one common approach is to use their fragment length for detection. After aligning read-pairs to the reference, read-pair distances are analyzed for statistically significant deviations. However, previously proposed methods are based on a simplified model of observed fragment lengths that does not agree with data. We show how this model limits statistical analysis of identifying variants and propose a new model, by adapting a model we have previously introduced for contig scaffolding, which agrees with data. From this model we derive an improved null hypothesis that, when applied in the variant caller CLEVER, reduces the number of false positives and corrects a bias that contributes to more deletion calls than insertion calls. A reference implementation is freely available at https://github.com/ksahlin/GetDistr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With some modifications to account for heterozygous variants. Only reads that have enough overlap and similar fragment lengths are grouped together.

  2. 2.

    Under a normal distribution, 100 continuous observations are statistically equivalent to 158 binary observations for the best possible “cut point”, which is the mean. The loss of information becomes worse the further away the cut point is from the mean, e.g., \(\mu \pm k\sigma \), as k increases. In practice \(k \in [3,6]\) in variant detection tools.

  3. 3.

    We call the side of the read that is closest to its mate “inner”.

  4. 4.

    A more informative prior could improve results, e.g., by fitting to the expected frequency and length of variants, studied in [4, 6]. By tailoring the prior we could essentially obtain any specificity and sensitivity for a given indel size. We believe that is promising future work.

  5. 5.

    n to obtain sample mean \(\bar{o}\), and \(\log t\) to search the convex ML curve.

  6. 6.

    http://dx.doi.org/10.1101/023929, Sect. 5.5.

  7. 7.

    http://www.ebi.ac.uk/ena/data/view/ERR262996.

  8. 8.

    Even small variants \(\delta \ll \sigma \) will not affect the model much.

  9. 9.

    Estimated as \(250 \cdot \frac{(114-16)\text {Mbp}}{3~\text {Gbp}}=8\), including compensation for the 16M N’s at the start of the reference sequence for chr 13.

References

  1. Benjamini, Y., Speed, T.P.: Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 40(10), e72–e72 (2012)

    Article  Google Scholar 

  2. Bickhart, D., Hutchison, J., Xu, L., Schnabel, R., Taylor, J., Reecy, J., Schroeder, S., Van Tassell, C., Sonstegard, T., Liu, G.: RAPTR-SV: a hybrid method for the detection of structural variants. Bioinformatics 31(13), 2084–2090 (2015)

    Article  Google Scholar 

  3. Carver, T., Böhme, U., Otto, T.D., Parkhill, J., Berriman, M.: BamView: viewing mapped read alignment data in the context of the reference sequence. Bioinformatics 26(5), 676–677 (2010)

    Article  Google Scholar 

  4. Chaisson, M.J.P., Huddleston, J., Dennis, M.Y., Sudmant, P.H., Malig, M., Hormozdiari, F., Antonacci, F., Surti, U., Sandstrom, R., Boitano, M., Landolin, J.M., Stamatoyannopoulos, J.A., Hunkapiller, M.W., Korlach, J., Eichler, E.E.: Resolving the complexity of the human genome using single-molecule sequencing. Nature 517(7536), 608–611 (2015)

    Article  Google Scholar 

  5. Chen, K., Wallis, J.W., McLellan, M.D., Larson, D.E., Kalicki, J.M., Pohl, C.S., McGrath, S., Wendl, M., Zhang, Q., Locke, D.P., Shi, X., Fulton, R.S., Ley, T., Wilson, R., Ding, L., Mardis, E.R.: BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Meth 6(9), 677–681 (2009)

    Article  Google Scholar 

  6. Chen, W., Zhang, L.: The pattern of DNA cleavage intensity around indels. Sci. Rep. 5, 8333 (2015)

    Article  Google Scholar 

  7. Church, D.M., Lappalainen, I., Sneddon, T.P., Hinton, J., Maquire, M., Lopez, J., Garner, J., Paschall, J., DiCuccio, M., Yaschenko, E., Scherer, S.W., Feuk, L., Flicek, P.: Public data archives for genomic structural variation. Nat. Genet. 42(10), 813–814 (2010)

    Article  Google Scholar 

  8. Fedorov, V., Mannino, F., Zhang, R.: Consequences of dichotomization. Pharm. Stat. 8(1), 50–61 (2009)

    Article  Google Scholar 

  9. Gillet-Markowska, A., Richard, H., Fischer, G., Lafontaine, I.: Ulysses: accurate detection of low-frequency structural variations in large insert-size sequencing libraries. Bioinformatics 31(6), 801–808 (2015)

    Article  Google Scholar 

  10. Handsaker, R.E., Korn, J.M., Nemesh, J., McCarroll, S.A.: Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat. Genet. 43(3), 269–276 (2011)

    Article  Google Scholar 

  11. Hayes, M., Pyon, Y.S., Li, J.: A model-based clustering method for genomic structural variant prediction and genotyping using paired-end sequencing data. PLoS ONE 7(12), e52881 (2012)

    Article  Google Scholar 

  12. Hormozdiari, F., Alkan, C., Eichler, E.E., Sahinalp, S.C.: Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res. 19(7), 1270–1278 (2009)

    Article  Google Scholar 

  13. Hunt, M., Newbold, C., Berriman, M., Otto, T.: A comprehensive evaluation of assembly scaffolding tools. Genome Biol. 15(3), R42 (2014)

    Article  Google Scholar 

  14. Lander, E.S., Waterman, M.S.: Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2(3), 231–239 (1988)

    Article  Google Scholar 

  15. Lee, S., Hormozdiari, F., Alkan, C., Brudno, M.: MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions. Nat. Methods 6(7), 473–474 (2009)

    Article  Google Scholar 

  16. Li, H., Durbin, R.: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5), 589–595 (2010)

    Article  Google Scholar 

  17. Marschall, T., Costa, I., Canzar, S., Bauer, M., Klau, G., Schliep, A., Schönhuth, A.: CLEVER: Clique-enumerating variant finder. Bioinformatics 28(22), 2875–2880 (2012)

    Article  Google Scholar 

  18. Nurk, S., Bankevich, A., Antipov, D., Gurevich, A.A., Korobeynikov, A., Lapidus, A., Prjibelski, A.D., Pyshkin, A., Sirotkin, A., Sirotkin, Y., Stepanauskas, R., Clingenpeel, S.R., Woyke, T., Mclean, J.S., Lasken, R., Tesler, G., Alekseyev, M.A., Pevzner, P.A.: Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 20(10), 714–737 (2013)

    Article  MathSciNet  Google Scholar 

  19. Poptsova, M.S., Il’icheva, I.A., Nechipurenko, D.Y., Panchenko, L.A., Khodikov, M.V., Oparina, N.Y., Polozov, R.V., Nechipurenko, Y.D., Grokhovsky, S.L.: Non-random DNA fragmentation in next-generation sequencing. Sci. Rep. 4, 4532 (2014)

    Article  Google Scholar 

  20. Quinlan, A.R., Clark, R.A., Sokolova, S., Leibowitz, M.L., Zhang, Y., Hurles, M.E., Mell, J.C., Hall, I.M.: Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Genome Res. 20(5), 623–635 (2010)

    Article  Google Scholar 

  21. Ribeiro, F.J., Przybylski, D., Yin, S., Sharpe, T., Gnerre, S., Abouelleil, A., Berlin, A.M., Montmayeur, A., Shea, T.P., Walker, B.J., Young, S.K., Russ, C., Nusbaum, C., MacCallum, I., Jaffe, D.B.: Finished bacterial genomes from shotgun sequence data. Genome Res. 22(11), 2270–2277 (2012)

    Article  Google Scholar 

  22. Sahlin, K., Street, N., Lundeberg, J., Arvestad, L.: Improved gap size estimation for scaffolding algorithms. Bioinformatics 28(17), 2215–2222 (2012)

    Article  Google Scholar 

  23. Sahlin, K., Vezzi, F., Nystedt, B., Lundeberg, J., Arvestad, L.: BESST – efficient scaffolding of large fragmented assemblies. BMC Bioinf. 15(1), 281 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristoffer Sahlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sahlin, K., Frånberg, M., Arvestad, L. (2016). Structural Variation Detection with Read Pair Information—An Improved Null-Hypothesis Reduces Bias. In: Singh, M. (eds) Research in Computational Molecular Biology. RECOMB 2016. Lecture Notes in Computer Science(), vol 9649. Springer, Cham. https://doi.org/10.1007/978-3-319-31957-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31957-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31956-8

  • Online ISBN: 978-3-319-31957-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics