Skip to main content

Abstract

Implementation issues related to evolving Takagi-Sugeno -Kang (TSK) fuzzy models of a nonlinear process are offered. The nonlinear process is the pendulum dynamics in the framework of the representative pendulum-crane systems, where the pendulum angle is the output variable of the TSK fuzzy models. An online identification algorithm (OIA) is given, which continuously evolves the rule bases and the parameters of the TSK fuzzy models, adds new rules with more summarization power and modifies the existing rules and parameters. The OIA includes an input selection algorithm and a Gravitational Search Algorithm that updates the parameters in the rule consequents. The evolving TSK fuzzy models are validated by experiments conducted on pendulum-crane laboratory equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelov, P.: Evolving Rule based Models: A Tool for Design of Flexible Adaptive Systems. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  2. Mouchaweh, M.S., Devillez, A., Lecolier, G.V., Billaudel, P.: Incremental learning in fuzzy pattern matching. Fuzzy Sets Syst. 132, 49–62 (2002)

    Google Scholar 

  3. Lughofer, E.: Evolving Fuzzy Systems—Methodologies. Advanced Concepts and Applications. Springer, Berlin (2011)

    MATH  Google Scholar 

  4. Precup, R.-E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M.: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput. Ind. (2015). doi:10.1016/j.compind.2015.03.001

    Google Scholar 

  5. Dovžan, D., Logar, V., Škrjanc, I.: Implementation of an Evolving fuzzy model (eFuMo) in a monitoring system for a waste-water treatment process. IEEE Trans. Fuzzy Syst. (2014). doi:10.1109/TFUZZ.2014.2379252

    Google Scholar 

  6. Precup, R.-E., Filip, H.-I., Radac, M.-B., Pozna, C., Dragos, C.-A., Preitl, S.: Experimental results of evolving Takagi-Sugeno fuzzy models for a nonlinear benchmark. In: 2012 IEEE 3\(^{rd}\) International Conference on Cognitive Infocommunications, pp. 567–572. Kosice, Slovakia (2012)

    Google Scholar 

  7. Precup, R.-E., Filip, H.-I., Radac, M.-B., Petriu, E.M., Preitl, S., Dragos, C.-A.: Online identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems. Appl. Soft Comput. 24, 1155–1163 (2014)

    Article  Google Scholar 

  8. Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. B Cybern. 34, 484–498 (2004)

    Article  Google Scholar 

  9. Precup, R.-E., Voisan, E.-I., Petriu, E.M., Radac, M.-B., Fedorovici, L.-O.: Implementation of evolving fuzzy models of a nonlinear process. In: 12\(^{th}\) International Conference on Informatics in Control, Automation and Robotics, vol.1, pp. 5–14. Colmar, Alsace, France (2015)

    Google Scholar 

  10. Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B.: Gravitational search algorithms in fuzzy control systems tuning. In: 18\(^{th}\) IFAC World Congress, pp. 13624–13629. Milano, Italy (2011)

    Google Scholar 

  11. David, R.-C., Precup, R.-E., Petriu, E.M., Radac, M.-B., Preitl, S.: Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity. Inf. Sci. 247, 154–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, W.-J., Huang, B.-J.: Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises. ISA Trans. 53, 1787–1795 (2014)

    Article  Google Scholar 

  13. Allouche, B., Vermeiren, L., Dequidt, A., Dambrine, M.: Step-crossing feasibility of two-wheeled transporter: analysis based on Takagi-Sugeno descriptor approach. In: IEEE 17\(^{th}\) International Conference on Intelligent Transportation Systems, pp. 2675–2680. Qingdao, China (2014)

    Google Scholar 

  14. Chiu, C.-S.: A dynamic decoupling approach to robust T-S fuzzy model-based control. IEEE Trans. Fuzzy Syst. 22, 1088–1100 (2014)

    Article  Google Scholar 

  15. Tsai, P.-W., Chen, C.-W.: Novel criterion for nonlinear time-delay systems using LMI fuzzy Lyapunov method. Appl. Soft Comput. 25, 461–472 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gao, Q., Feng, G., Dong, D., Liu, L.: Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems. IEEE Trans. Cybern. 54, 880–887 (2015)

    Google Scholar 

  17. Li, H., Sun, X., Shi, P., Lam, H.-K.: Control design of interval type-2 fuzzy systems with actuator fault: sampled-data control approach. Inf. Sci. 302, 1–13 (2015)

    Article  Google Scholar 

  18. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

    Article  MATH  Google Scholar 

  19. Turnau, A., Pilat, A., Hajduk, K., Korytowski, A., Grega, W., Gorczyca, P., Kolek, K., Rosól, M.: Pendulum-Cart System User’s Manual. INTECO Ltd., Krakow (2008)

    Google Scholar 

  20. Ramos, J.V., Dourado, A.: On-line interpretability by rule base simplification and reduction. In: European Symposium on Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive Systems, pp. 1–6. Aachen, Germany (2004)

    Google Scholar 

  21. Aires, L., Araújo, J., Dourado, A.: Industrial monitoring by evolving fuzzy systems. In: Joint 2009 IFSA World Congress and 2009 EUSFLAT Conference, pp. 1358–1363. Lisbon, Portugal (2009)

    Google Scholar 

  22. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  23. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)

    Article  Google Scholar 

  24. Lughofer, E., Klement, E. P.: FLEXFIS: a variant for incremental learning of Takagi-Sugeno fuzzy systems. In: 14\(^{\rm th}\) IEEE International Conference on Fuzzy Systems, pp. 915–920. Reno, NV, USA (2005)

    Google Scholar 

  25. Danković, B., Nikolić, S., Milojković, M., Jovanović, Z.: A class of almost orthogonal filters. J. Circuits Syst. Comput. 18, 923–931 (2009)

    Article  Google Scholar 

  26. Filip, F.-G., Leiviskä, K.: Large-scale complex systems. In: Nof, S.Y. (ed.) Springer Handbook of Automation, pp. 619–638. Springer, Heidelberg (2009)

    Google Scholar 

  27. Blažič, S., Matko, D., Škrjanc, I.: Adaptive law with a new leakage term. IET Control Theory Appl. 4, 1533–1542 (2010)

    Article  MathSciNet  Google Scholar 

  28. Precup, R.-R., David, R.-C., Petriu, E.M., Preitl, S., Paul, A.S.: Gravitational search algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing, vol. 96, pp. 141–150. Springer, Heidelberg (2011)

    Google Scholar 

  29. Horváth, L., Rudas, I.J.: Active knowledge for the situation-driven control of product definition. Acta Polytech. Hung. 10(2), 217–234 (2013)

    Google Scholar 

  30. Osaba, E., Diaz, F., Onieva, E., Carballedo, R., Perallos, A.: AMCPA: a population metaheuristic with adaptive crossover probability and multi-crossover mechanism for solving combinatorial optimization problems. Int. J. Artif. Intell. 12(2), 1–23 (2014)

    Google Scholar 

  31. Tang, L., Zhao, Y., Liu, J.: An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Trans. Evol. Comput. 18, 209–225 (2014)

    Article  Google Scholar 

  32. Savio, M.R.D., Sankar, A., Vijayarajan, N.R.: A novel enumeration strategy of maximal bicliques from 3-dimensional symmetric adjacency matrix. Int. J. Artif. Intell. 12(2), 42–56 (2014)

    Google Scholar 

  33. Zhao, X., Yin, S., Li, H., Niu, B.: Switching stabilization for a class of slowly switched systems. IEEE Trans. Autom. Control 60, 221–226 (2015)

    Article  MathSciNet  Google Scholar 

  34. Preitl, S., Precup, R.-E.: Introducere in Conducerea Fuzzy a Proceselor. Editura Tehnica, Bucharest (1997)

    Google Scholar 

  35. Baranyi, P., Tikk, D., Yam, Y., Patton, R.J.: From differential equations to PDC controller design via numerical transformation. Comput. Ind. 51, 281–297 (2003)

    Article  MATH  Google Scholar 

  36. Precup, R.-E., Tomescu, M.L., Preitl, S.: Fuzzy logic control system stability analysis based on Lyapunov’s direct method. Int. J. Comput. Commun. Control 4, 415–426 (2009)

    Article  Google Scholar 

  37. Boza, Sánchez, A.S., Haber-Guerra, R., Gajate, A.: Artificial cognitive control system based on the shared circuits model of sociocognitive capacities. A first approach. Eng. Appl. Artif. Intell. 24, 209–219 (2011)

    Google Scholar 

  38. Precup, R.-E., Dragos, C.-A., Preitl, S., Radac, M.-B., Petriu, E.M.: Novel tensor product models for automatic transmission system control. IEEE Syst. J. 6, 488–498 (2012)

    Article  Google Scholar 

  39. Vaščák, J.: Adaptation of fuzzy cognitive maps by migration algorithms. Kybernetes 41, 429–443 (2012)

    Article  Google Scholar 

  40. Johanyák, Z.C.: Fuzzy modeling of thermoplastic composites’ melt volume rate. Comput. Inf. 32, 845–857 (2013)

    Google Scholar 

  41. Husek, P.: Robust PI controller design with respect to fuzzy sensitivity margins. Appl. Soft Comput. 13, 2037–2044 (2013)

    Article  Google Scholar 

  42. Mishra, J., Gho, S.: Uncertain query processing using vague set or fuzzy set: which one is better? Int. J. Comput. Commun. Control 9, 730–740 (2014)

    Article  Google Scholar 

  43. Kaur, G., Dhar, J., Guha, R.K.: Stock market forecasting using ANFIS with OWA operator. Int. J. Artif. Intell. 12(2), 102–114 (2014)

    Google Scholar 

  44. Liu, Z., Chen, C., Zhang, Y.: Decentralized robust fuzzy adaptive control of humanoid robot manipulation with unknown actuator backlash. IEEE Trans. Fuzzy Syst. 23, 605–616 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0109, by a grant from the Partnerships in priority areas – PN II program of the Romanian National Authority for Scientific Research ANCS, CNDI – UEFISCDI, project number PN-II-PT-PCCA-2011-3.2-0732, by grants from the Partnerships in priority areas – PN II program of the Romanian Ministry of Education and Research (MEdC) – the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI), project numbers PN-II-PT-PCCA-2013-4-0544 and PN-II-PT-PCCA-2013-4-0070, and by a grant from the NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu-Emil Precup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Precup, RE., Voisan, EI., Petriu, E.M., Radac, MB., Fedorovici, LO. (2016). Gravitational Search Algorithm-Based Evolving Fuzzy Models of a Nonlinear Process. In: Filipe, J., Madani, K., Gusikhin, O., Sasiadek, J. (eds) Informatics in Control, Automation and Robotics 12th International Conference, ICINCO 2015 Colmar, France, July 21-23, 2015 Revised Selected Papers. Lecture Notes in Electrical Engineering, vol 383. Springer, Cham. https://doi.org/10.1007/978-3-319-31898-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31898-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31896-7

  • Online ISBN: 978-3-319-31898-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics