Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 383))

Abstract

This paper presents trajectory tracking algorithms for a group of mobile robots. The dynamics of differentially driven mobile robots with nonholonomic constrains is taken into account. The paper describes simulation results for the formation motion in the environment free from obstacles and with circle-shaped static obstacles, the experimental testbed and experiments for the kinematic version of the Vector Field Orientation algorithm. The collision avoidance utilizes local artificial potential function that requires only the local information about the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  2. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  3. Do, K.: Formation tracking control of unicycle-type mobile robots with limited sensing ranges. IEEE Trans. Control Syst. Technol. 16(3), 527–538 (2008)

    Article  Google Scholar 

  4. Egerstedt, M., Xiaoming, H.: Formation constrained multi-agent control. IEEE Trans. Robot. Autom. 17(6), 947–951 (2001)

    Article  Google Scholar 

  5. Kowalczyk, W.: Control algorithms for the formation of mobile robots, PhD thesis (in Polish) (2008)

    Google Scholar 

  6. Kowalczyk, W., Kozlowski, K., Tar, J.: Trajectory tracking for multiple unicycles in the environment with obstacles. In: 2010 IEEE 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD), pp. 451–456 (2010)

    Google Scholar 

  7. Lawton, J., Beard, R., Young, B.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  8. Lewis, M., Tan, K.-H.: High precision formation control of mobile robots using virtual structures. Auton. Robots 4(4), 387–403 (1997)

    Article  Google Scholar 

  9. Mastellone, S., Stipanowic, D., Graunke, C., Intlekofer, K., Spong, M.: Formation control and collision avoidance for multi-agent nonholonomic systems: theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)

    Article  Google Scholar 

  10. Michalek, M., Kozlowski, K.: Vector-field-orientation feedback control method for a differentially driven vehicle. IEEE Trans. Control Syst. Technol. 18(1), 45–65 (2010)

    Article  Google Scholar 

  11. Monteiro, S., Bicho, E.: A dynamical systems approach to behavior-based formation control. In: In International Conference on Robotics Automation, pp. 2606–2611 (2002)

    Google Scholar 

  12. Reynolds, C.: Flocks, herds, and schools: a distributed behavioral model. In: Computer Graphics, pp. 25–34 (1987)

    Google Scholar 

  13. Rimon, E., Koditschek, D.: The construction of analytic diffeomorphisms for exact robot navigation on star worlds. In: 1989 IEEE International Conference on Robotics and Automation, 1989. Proceedings, vol. 1, pp. 21–26 (1989)

    Google Scholar 

  14. Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  15. Rodriguez-Seda, E., Tang, C., Spong, M., Stipanovic, D.: Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing. Int. J. Robot. Res. 33(12), 1569–1592 (2014)

    Article  Google Scholar 

  16. Stipanovic, D., Hokayem, P., Spong, M., Siljak, D.: Avoidance control for multi-agent systems. ASME J. Dyn. Syst. Meas. Control Spec. Issue Multi-Agent Syst. 129, 699–707 (2007)

    Article  Google Scholar 

  17. Takahashi, H., Nishi, H., Ohnishi, K.: Autonomous decentralized control for formation of multiple mobile robots considering ability of robot. IEEE Trans. Ind. Electron. 51(6), 1272–1279 (2004)

    Article  Google Scholar 

  18. Tan, K.-H., Lewis, M.: Virtual structures for high-precision cooperative mobile robotic control. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems ’96, IROS 96, vol. 1, pp. 132–139 (1996)

    Google Scholar 

  19. Tanner, H., Pappas, G., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)

    Article  Google Scholar 

  20. Urakubo, T., Tsuchiya, K., Tsujita, K.: Motion control of a two-wheeled mobile robot. ASME J. Dyn. Syst. Meas. Control Spec. Issue Multi-Agent Syst. 15(7), 711–728 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Kozłowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kozłowski, K., Kowalczyk, W. (2016). Formation Control and Vision Based Localization of a System of Mobile Robots. In: Filipe, J., Madani, K., Gusikhin, O., Sasiadek, J. (eds) Informatics in Control, Automation and Robotics 12th International Conference, ICINCO 2015 Colmar, France, July 21-23, 2015 Revised Selected Papers. Lecture Notes in Electrical Engineering, vol 383. Springer, Cham. https://doi.org/10.1007/978-3-319-31898-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31898-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31896-7

  • Online ISBN: 978-3-319-31898-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics