Active Safety Towards Highly Automated Driving

  • Klaus Kompass
  • Markus SchratterEmail author
  • Thomas Schaller


Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is, therefore, currently one of the main goal in the development of future vehicles. In particular, premium manufacturers, such as the BMW Group, put Highly Automated Driving at the top of the roadmap. This chapter details the motivation behind Highly Automated Driving from a road safety perspective. Assessing the effect of HAD functions on road safety is essential for the homologation of such complex systems. New methods are needed to enable the assessment of complex driving functions and demonstrate the increase in road safety. This problem will be considered and to a possible approach will be referred. Furthermore, the additional (indirect) safety benefit will be described through the usage of HAD technology to improve Active Safety Systems.


Highly automated driving Active safety Effectiveness assessment 


  1. 1.
    T.M. Gasser, D. Westhoff, BASt-Study: Definitions of Automation and Legal Issues in Germany, German Federal Highway Research Institute, 2012Google Scholar
  2. 2.
    D. Damböck, M. Farid, L. Tönert, K. Bengler, Übernahmezeiten beim hochautomatisierten Fahren, 5. Tagung Fahrerassistenz, Munich, 2012Google Scholar
  3. 3.
    R. Yerkes, J. Dodson, The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18(5), 459–482 (1908)CrossRefGoogle Scholar
  4. 4.
    S. Lüke, O. Fochler, T. Schaller, U. Regensburger, Stauassistenz und -automation, in Handbuch Fahrerassistenzsysteme, 3. Auflage, ed. by H.~Winner, S. Hakuli, F. Lotz, C. Singer (Springer Vieweg, Wiesbaden, 2015)Google Scholar
  5. 5.
    B. Filzek, Schlüsseltechnologien zum Automatisierten Fahren, AAET 2014, Braunschweig, 2014Google Scholar
  6. 6.
    BMW Group PressClub Global, Ready for Takeover! (2011), [Online]
  7. 7.
    AUDI AG, Long-Distance Test Drive Successfully Completed: Audi A7 Sportback Piloted Driving Concept Arrives in Las Vegas Following 560 Mile Drive (2015), [Online]
  8. 8.
    Daimler AG, Pioneering Achievement: Autonomous Long-Distance Drive in Rural and: Mercedes-Benz S-Class INTELLIGENT DRIVE Drives Autonomously in the Tracks of Bertha Benz (2013), [Online]
  9. 9.
    H. Winner, Absicherung automatischen Fahrens, 6. FAS-Tagung München, Munich, 2013Google Scholar
  10. 10.
    DESTATIS, Road Accidents 2012, Statistisches Bundesamt, Wiesbaden, 2013Google Scholar
  11. 11.
    T. Hummel, M. Kühn, J. Bende, A. Lang, An Investigation of Their Potential Safety Benefits Based on an Analysis of Insurance Claims in Germany, UDV (German Insurers Accident Research), Berlin, 2011Google Scholar
  12. 12.
    DESTATIS, Road Accidents 2013, Statistisches Bundesamt, Wiesbaden, 2014.Google Scholar
  13. 13.
    BMW Group, BMW 7 Series (2015), [Online]
  14. 14.
    T. Schaller, Active Safety on the Road Towards Highly Automated Driving, in 8th Graz Symposium Virtuelles Fahrzeug, Graz, 2015Google Scholar
  15. 15.
    K. Kompass, T. Helmer, L. Wang, R. Kates, Gesamthafte Bewertung der Sicherheitsveränderung durch FAS/HAF im Verkehrssystem: Der Beitrag von Simulation, in Haus der Technik—Tagung Fahrerassistenz und Aktive Sicherheit, Essen, 2015Google Scholar
  16. 16.
    N. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas, Y. Pilat, F. Homm, W. Huber, N. Kaempchen, Experience, results and lessons learned from automated driving on Germany’s highway. IEEE Intell. Transp. Syst. Mag. 7(1), 42–57 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Klanner, C. Ruhhammer, Backendsysteme zur Erweiterung der Wahrnehmungsreichweite von Faherassistenzsystemen, in Handbuch Fahrerassistenzsysteme, 3. Auflage, ed. by H.~Winner, S. Hakuli, F. Lotz, C. Singer (Springer, Wiesbaden, 2015)Google Scholar
  18. 18.
    R. Krzikalla, A. Schindler, M. Wankerl, R. Wertheimer, Vernetztes Automobil: Mehr Sicherheit durch Positionsbestimmung mit Satelliten und Landmarken (Springer, Wiesbaden, 2014)Google Scholar
  19. 19.
    P. Waldmann, D. Niehues, Der BMW Track Trainer—Automatisiertes fahren im Grenzbereich auf der Nürburgring Nordschleife, Garching, 4.Tagung Sicherheit durch Fahrerassistenz, Germany, 2010Google Scholar
  20. 20.
    BMW Group PressClub Global, BMW at the Consumer Electronics Show: Highly Automated Driving at the Limit (2014), [Online]
  21. 21.
    N. Kaempchen, M. Aeberhard, P. Waldmann, M. Ardelt, S. Rauch, Der BMW Nothalteassistent: Hochautomatisiertes Fahren für mehr Sicherheit im Straßenverkehr, Elektronik Automotive, 2011Google Scholar
  22. 22.
    M. Liebner, C. Ruhhammer, F. Klanner, C. Stiller, Generic Driver Intent Inference Based on Parametric Models, in IEEE Conference on Intelligent Transportation Systems, Proceedings, Netherlands, 2013Google Scholar
  23. 23.
    M. Liebner, F. Klanner, Driver intent inference and risk assessment, in Handbook of Driver Assistance Systems, ed. by H.~Winner, S. Hakuli, F. Lotz, C. Singer (Springer, Switzerland, 2015)Google Scholar
  24. 24.
    T. Heinrich, J. Ortlepp, J. Schmiele und H. Voß, Infrastrukturgestützte Fahrerassistenz, UDV (German Insurers Accident Research), Berlin, 2011Google Scholar
  25. 25.
    C. Rodemerk, S. Habenicht, A. Weitzel, H. Winner, T. Schmitt, Development of a General Criticality Criterion for the Risk Estimation of Driving Situations and Its Application to A Maneuver-Based Lane Change Assistance System, Alcala de Henares, in IEEE Intelligent Vehicles Symposium, Spain, 2012Google Scholar
  26. 26.
    W. Wachenfeld, H. Winner, Lernen autonome Fahrzeuge? in Autonomes Fahren—Technische, rechtliche und gesellschaftliche Aspekte, ed. by M. Maurer, J. Christian Gerdes, B. Lenz, H.~Winner (Springer Vieweg, Berlin, 2015)Google Scholar
  27. 27.
    A. Seewald, C. Haß, M. Keller, T. Bertram, Emergency steering assist for collision avoidance. ATZ Worldwide 117, 14–19 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Herrtwich, Autonomous Automobile Future, in 8th Graz Symposium Virtuelles Fahrzeug, Graz, 2015Google Scholar
  29. 29.
    K. Kompass, L. Wang, T. Helmer, Prospektive Wirksamkeitsanalyse von aktiven Sicherheitssystemen und HAF, VDA Technischer Kongress, 2015Google Scholar
  30. 30.
    T. Helmer, Development of a Methodology for the Evaluation of Active Safety Using the Example of Preventive Pedestrian Protection, Springer Thesis, 2015Google Scholar
  31. 31.
    Y. Page, F. Fahrenkrog, A. Fiorentino, J. Gwehenberger, T. Helmer, M. Lindman, O. Lex van Rooij, S. Puch, M. Fränzle, U. Sander, P. Wimmer, A Comprehensive and Harmonized Method for Assessing the Effectiveness of Advanced Driver Assistance Systems by Virtual Simulation: The P.E.A.R.S. Initiative, in International Technical Conference on the Enhanced Safety of the Vehicles, Gothenburg, Sweden, 2015Google Scholar
  32. 32.
    AdaptIVe, European Research Project: AdaptIVe, Automated Driving (2015), [Online]

Copyright information

© Springer International Publishing Switzerland 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Klaus Kompass
    • 1
  • Markus Schratter
    • 2
    Email author
  • Thomas Schaller
    • 1
  1. 1.BMW GroupMunichGermany
  2. 2.Virtual Vehicle Research CenterGrazAustria

Personalised recommendations