Advanced System-Level Design for Automated Driving

  • Jan Micha BorrmannEmail author
  • Sebastian Ottlik
  • Alexander Viehl
  • Oliver Bringmann
  • Wolfgang Rosenstiel


Automated driving (A.D.) requires concurrent execution of multiple complex driving functions on automotive embedded platforms. In general, such systems can be partitioned into early stages including sensor processing, individual perception, and cognition functions and into later, more centralized stages that perform data fusion, planning, and decision making. In this chapter, we exemplarily concentrate on automotive embedded processing systems for perception and cognition problems, however, we expect similar problems also on later stages such as data fusion. For perception and cognition, one can observe a wide gap between required processing power and the achievable embedded realizations which have to fulfill non-functional requirements such as low power and small cost. Furthermore, these systems must perform all processing under strict safety requirements that guarantee deadlines and provide high system robustness.


Automotive many-core architectures Efficient automotive embedded systems Embedded automotive systems Hardware/software co-design Heterogeneous embedded systems Platform-based automotive design System-level embedded design Virtual prototyping. 



This work was partially funded by the State of Baden-Württemberg, Germany, Ministry of Science, Research and Arts within the scope of Cooperative Research Training Group EAES, and by the ITEA2/BMBF project MACH under grant 01IS13016B.


  1. 1.
    AbsInt Angewandte Informatik GmbH: aiT Worst-Case Execution Time Analyzers (2015), Accessed 18 March 2015
  2. 2.
    ADAS Applications Processor TDA2x System-on-Chip Technical Brief (2013), Accessed 18 March 2015Google Scholar
  3. 3.
    S. Altmeyer, B. Lisper, C. Maiza, J. Reineke, C. Rochange, WCET and mixed-criticality: what does confidence in WCET estimations depend upon? in OASIcs-OpenAccess Series in Informatics, vol. 47. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  4. 4.
    AUTOSAR, Specification of Timing Extensions, Release 4.2.2, Document 411 (2015). doi:411. Accessed 20 Oct 2015
  5. 5.
    F. Bellard, QEMU, a fast and portable dynamic translator, in USENIX Annual Technical Conference, FREENIX Track (2005)Google Scholar
  6. 6.
    J. Borrmann, A. Viehl, O. Bringmann, W. Rosenstiel, Parallel video-based traffic sign recognition on the intel SCC many-core platform, in Proceedings of the 2012 Conference on Design and Architectures for Signal and Image Processing (DASIP) (2012), pp. 1–2Google Scholar
  7. 7.
    J. Borrmann, F. Haxel, D. Nienhüser, A. Viehl, J. Zöllner, O. Bringmann, W. Rosenstiel, STELLaR - a case-study on SysTEmaticaLLy embedding a traffic light recognition, in Proceedings of the 17th IEEE International Conference on Intelligent Transportation Systems (ITSC) (2014), pp. 1258–1265. doi: 10.1109/ITSC.2014.6957860
  8. 8.
    J. Borrmann, F. Haxel, A. Viehl, O. Bringmann, W. Rosenstiel, Safe and efficient runtime resource management in heterogeneous systems for automated driving, in Proceedings of the 18th IEEE International Conference on Intelligent Transportation Systems (ITSC) (2015)Google Scholar
  9. 9.
    O. Bringmann, W. Ecker, A. Gerstlauer, A. Goyal, D. Mueller-Gritschneder, P. Sasidharan, S. Singh, The next generation of virtual prototyping: ultra-fast yet accurate simulation of HW/SW systems, in Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition (EDA Consortium, Grenoble, 2015), pp. 1698–1707Google Scholar
  10. 10.
    L. Cai, D. Gajski, Transaction level modeling: an overview, in Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (ACM, New York, 2003), pp. 19–24Google Scholar
  11. 11.
    W. Ecker, V. Esen, R. Schwencker, T. Steininger, M. Velten, TLM+ modeling of embedded hw/sw systems, in Proceedings of the Conference on Design, Automation and Test in Europe (European Design and Automation Association, Dresden, 2010), pp. 75–80Google Scholar
  12. 12.
    ETAS GmbH, ASCET-SymTA/S End-to-end Timing Analysis for Electronic Control Systems (2015), Accessed 01 June 2016Google Scholar
  13. 13.
    M. Geilen, S. Stuijk, Worst-case performance analysis of synchronous dataflow scenarios. in Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (ACM, New York, 2010), pp. 125–134Google Scholar
  14. 14.
    R. Henia, L. Rioux, N. Sordon, G.E. Garcia, M. Panunzio, Integrating model-based formal timing analysis in the industrial development process of satellite on-board software, in Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD) (2014), pp. 619–625Google Scholar
  15. 15.
    IEEE Standard for Standard SystemC Language Reference Manual (2012). IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005)Google Scholar
  16. 16.
    R. Kumar, V. Zyuban, D.M. Tullsen, Interconnections in multi-core architectures: understanding mechanisms, overheads and scaling, in Proceedings of the 32nd International Symposium on Computer Architecture, 2005. ISCA’05 (IEEE, New York, 2005), pp. 408–419Google Scholar
  17. 17.
    K. Lu, D. Müller-Gritschneder, U. Schlichtmann, Hierarchical control flow matching for source-level simulation of embedded software, in Proceedings of the 2012 International Symposium on System on Chip (SoC) (IEEE, New York, 2012), pp. 1–5Google Scholar
  18. 18.
    K. Lu, D. Muller-Gritschneder, U. Schlichtmann, Fast cache simulation for host-compiled simulation of embedded software, in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013 (IEEE, New York, 2013), pp. 637–642Google Scholar
  19. 19.
    T.G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S. Dighe, The 48-core SCC processor: the programmer’s view, in 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, November 2010, pp. 1–11.
  20. 20.
    MIRA Ltd, MISRA-C:2004 Guidelines for the use of the C language in critical systems (2004). Google Scholar
  21. 21.
    Mobileye (2015), Accessed 18 March 2015
  22. 22.
    A. Monot, N. Navet, B. Bavoux, F. Simonot-Lion, Multisource software on multicore automotive ECUs - combining runnable sequencing with task scheduling. IEEE Trans. Ind. Electron. 59 (10), 3934–3942 (2012)CrossRefGoogle Scholar
  23. 23.
    Moving Closer to Automated Driving, Mobileye Unveils EyeQ4 System-on-Chip with its First Design Win for 2018 (2015), Accessed 18 March 2015
  24. 24.
    D. Nienhüser, Kontextsensitive Erkennung und Interpretation fahrrelevanter statischer Verkehrselemente. Ph.D. thesis, KIT Karlsruhe (2014)Google Scholar
  25. 25.
    nVidia, Tegra K1 Technical reference manual (2014), Accessed 18 March 2015
  26. 26.
    nVidia, Tegra X1 Super Chip (2015), Accessed 18 March 2015
  27. 27.
    S. Ottlik, S. Stattelmann, A. Viehl, W. Rosenstiel, O. Bringmann, Context-sensitive timing simulation of binary embedded software, in Proceedings of the 2014 International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES) (2014)Google Scholar
  28. 28.
    S. Ottlik, J.M. Borrmann, S. Asbach, A. Viehl, W. Rosenstiel, O. Bringmann, Trace-based context-sensitive timing simulation considering execution path variations, in 21st Asia and South Pacific Design Automation Conference (ASP-DAC) (2016)Google Scholar
  29. 29.
    M. Pressler, A. Viehl, O. Bringmann, W. Rosenstiel, Execution cost estimation for software deployment in component-based embedded systems, in Proceedings of the 17th international ACM Sigsoft Symposium on Component-Based Software Engineering (ACM, New York, 2014), pp. 123–128Google Scholar
  30. 30.
    S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2. edn. Prentice Hall Series in Artificial Intelligence (Prentice Hall, Upper Saddle River, NJ, 2003)Google Scholar
  31. 31.
    Safer SoCs for safer driving., the Open Forum for Semiconductor Professionals (2014), Accessed 18 March 2015
  32. 32.
    D. Sanchez, G. Michelogiannakis, C. Kozyrakis, An analysis of on-chip interconnection networks for large-scale chip multiprocessors. ACM Trans. Archit. Code Optim. (TACO) 7 (1), 4 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Schmidt, J. Harnisch, D. Marx, A. Mayer, A. Kohn, R. Deml, Timing analysis and tracing concepts for ECU development. Technical Report, SAE Technical Paper, 2014CrossRefGoogle Scholar
  34. 34.
    T. Schonwald, A. Koch, B. Ranft, A. Viehl, O. Bringmann, W. Rosenstiel, Stereo depth map computation on a Tilera TILEPro64 embedded multicore processor, in Proceedings of the 2012 Conference on Design and Architectures for Signal and Image Processing (DASIP) (2012)Google Scholar
  35. 35.
    S. Stattelmann,Source-Level Performance Estimation of Compiler-Optimized Embedded Software Considering Complex Program Transformations (Verlag Dr. Hut, Munich, 2013)Google Scholar
  36. 36.
    S. Stattelmann, O. Bringmann, W. Rosenstiel, Fast and accurate source-level simulation of software timing considering complex code optimizations, in Proceedings of the 48th Design Automation Conference (DAC) (2011)Google Scholar
  37. 37.
    G. Stein, E. Rushinek, G. Hayun, A. Shashua, A computer vision system on a chip: a case study from the automotive domain, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Workshops, vol. 3 (2005), p. 130. doi: 10.1109/CVPR.2005.387.
  38. 38.
    STMicro and Mobileye are Developing Third-Generation SoCs for Driver Assistance. John Day’s Automotive Electronics - Insight for Engineers (2011), Accessed 18 March 2015
  39. 39.
    Symtavision GmbH: Leading in real time - overview flyer (2015), Accessed 20 Oct 2015
  40. 40.
    TDA2x SoC for Advanced Driver Assistance Systems (ADAS) (2015), Accessed 18 March 2015
  41. 41.
    TDA3 SoC Processor Advanced Driver Assistance Systems (ADAS) (2015), Accessed 18 March 2015
  42. 42.
    D. Thach, Y. Tamiya, S. Kuwamura, A. Ike, Fast cycle estimation methodology for instruction-level emulator, in Proceedings of the 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2012)Google Scholar
  43. 43.
    The MathWorks, Inc. (2015), Accessed 18 March 2015
  44. 44.
    Tilera goes pro with TilePro64 (2008), Accessed 18 March 2015
  45. 45.
    Veripool Verilator (2015), Accessed 18 March 2015
  46. 46.
    N. Weste, D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th edn. (Addison-Wesley Publishing Company, New York, 2010)Google Scholar
  47. 47.
    XILINX: UG585 - Zynq-7000 all programmable SoC technical reference manual (2014), Accessed 18 March 2015
  48. 48.
    J. Zimmermann, Applikationsspezifische Analyse und Optimierung der Energieeffizienz eingebetteter Hardware/Software-Systeme. Ph.D. thesis, Universität Tübingen, Germany (2013). Website

Copyright information

© Springer International Publishing Switzerland 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Jan Micha Borrmann
    • 1
    Email author
  • Sebastian Ottlik
    • 1
  • Alexander Viehl
    • 1
  • Oliver Bringmann
    • 2
  • Wolfgang Rosenstiel
    • 2
  1. 1.FZI Research Center for Information TechnologyKarlsruheGermany
  2. 2.Wilhelm-Schickard-Institute for Computer ScienceUniversity of TübingenTübingenGermany

Personalised recommendations