Skip to main content

Schubert Derivations

  • Chapter
  • First Online:
Hasse-Schmidt Derivations on Grassmann Algebras

Part of the book series: IMPA Monographs ((IMPA,volume 4))

  • 713 Accesses

Abstract

Let A be a commutative ring with unit, p ∈ A[X] a monic polynomial of degree n > 0, M p the quotient of A[X] modulo (p) and \( b_{i}:= X^{i} + (p) \). The protagonist of this chapter is a distinguished HS-derivation on \( \bigwedge M_{p} \), called Schubert derivation. It is the unique HS-derivation \( \sigma _{+}(z):=\sum _{i\geq 0}\sigma _{i}z^{i} \) such that \( \sigma _{i}b_{j} = b_{i+j} \). The subscript ‘+’ of \( \sigma \) in the notation is to mark the difference from its relative \( \sigma _{-}(z):=\sum _{i\geq 0}\sigma _{-i}z^{-i} \), to be investigated in Chapter 6 Its connection with Schubert calculus, summarized in Section 5.4, where a few notions of intersection theory are outlined as well, motivates notation and terminology: it is based on Pieri- and Giambelli-type formulas enjoyed by the coefficients of the Schubert derivation. Pieri’s rule is treated in Section 5.2, in its quantum version as well, while Giambelli’s is proved in Section 5.8, basing on a flexible determinantal formula due to Laksov and Thorup as in [96, 97].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    After the Swiss mathematician Eduard Stiefel, 21 April 1909–25 November 1978

  2. 2.

    Two subvarieties V 1 and V 2 are said to be properly intersecting if the codimension of each irreducible component of \( V _{1} \cap V _{2} \) is the sum of the codimensions.

  3. 3.

    The lack of space allowed by the book’s template prevented us from being more explicit, so we recommend the reader to follow the proofs of the cases r = 2, 3 to check that indeed the computations are correct and to sense what is going on.

References

  1. D. Anderson, Introduction to equivariant cohomology in algebraic geometry, in Contributions to Algebraic Geometry. Impanga Lecture Notes, ed. by P. Pragacz. EMS Series of Congress Reports, European Mathematical Society Publishing House, Zurich (2012), pp. 71–92. ISBN 978-3-03719-114-9. http://www.ems-ph.org/books/book.php?proj_nr=154. doi:10.4171/114

    Google Scholar 

  2. A. Bertram, Quantum schubert calculus. Adv. Math. 128 (2), 289–305 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Buch, Quantum cohomology of Grassmans. Compos. Math. 137 (2), 227–235 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Cordovez, L. Gatto, T. Santiago, Newton binomial formulas in Schubert calculus. Rev. Mat. Complut. 22 (1), 129–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Costa, S. Marchesi, R.M. Miró-Roig, Tango bundles on Grassmannians. Math. Nachr. 1–12 (2015). http://onlinelibrary.wiley.com/doi/10.1002/mana.201500015/abstract. doi:10.1002/mana.201500015

    Google Scholar 

  6. E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Operators approach to the Kadomtsev-Petviashvili equation, Transformation groups for soliton equations III. J. Phys. Soc. Jpn. 50, 3806–3812 (1981)

    MathSciNet  MATH  Google Scholar 

  7. R. Donagi, On the geometry of Grassmannians. Duke Math. J. 44 (4), 795–835 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Ekedahl, D. Laksov, Splitting algebras, symmetric functions and Galois theory. J. Algebra Appl. 4 (1), 59–75 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Fulton, Intersection Theory, 2nd edn. (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  10. W. Fulton, Equivariant Cohomology in Algebraic Geometry. Eilenberg Lectures, Columbia University, Notes by D. Anderson (2007). Available at http://w3.impa.br/~dave/eilenberg/

    Google Scholar 

  11. S. Galkin, V. Golyshev, H. Iritani, Gamma classes and quantum cohomology of fano manifolds: gamma conjectures (2014). arXiv:1404.6407v1

    Google Scholar 

  12. L. Gatto, Schubert calculus via Hasse–Schmidt derivations. Asian J. Math. 9 (3), 315–322 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Gatto, Schubert Calculus: An Algebraic Introduction. Publicações Matemáticas do IMPA, 25 Colóquio Brasileiro de Matemática (Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro-Brazil, 2005)

    Google Scholar 

  14. L. Gatto, T. Santiago, Schubert calculus on a Grassmann algebra. Can. Math. Bull. 52 (2), 200–212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Gatto, I. Scherbak, On one property of one solution of one equation or linear ODE’s, Wronskians and schubert calculus. Moscow Math. J. to the seventy-fifth anniversary of V. I. Arnold 12 (2), 275–291 (2012)

    MathSciNet  MATH  Google Scholar 

  16. V. Golyshev, L. Manivel, Quantum cohomology and the Satake isomorphism. http://arxiv.org/abs/1106.3120. arXiv:; http://arxiv.org/abs/1106.3120, 1106.3120.

  17. P. Griffiths, J. Harris, Principles of Algebraic Geometry (Wiley Classics Library, New York, 1994)

    Book  MATH  Google Scholar 

  18. R. Hartshorne, Algebraic Geometry. GTM, vol. 52 (Springer, New York/Heidelberg, 1977)

    Google Scholar 

  19. W. Hodge, D. Pedoe, Methods of Algebraic Geometry, vol. II, Book III (Cambridge University Press, Cambridge, 1947)

    MATH  Google Scholar 

  20. Y. Huang, C. Li, On equivariant quantum Schubert calculus for GP. J. Algebra 441, 21–56 (2015)

    Google Scholar 

  21. V.G. Kac, A.K. Raina, Highest Weight Representations of Infinite Dimensional Lie Algebras. Advanced Studies in Mathematical Physics, vol. 2 (World Scientific, Singapore, 1987)

    Google Scholar 

  22. V.G. Kac, A.K. Raina, N. Rozhkovskaya, Highest Weight Representations of Infinite Dimensional Lie Algebras. Advanced Series in Mathematical Physics, vol. 29, 2nd edn. (World Scientific, Singapore, 2013)

    Google Scholar 

  23. G. Kempf, D. Laksov, The determinantal formula of Schubert calculus. Acta Math. 32, 153–162 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. S.L. Kleiman, The transversality of a general translate. Comp. Math. 38, 287–297 (1974)

    MathSciNet  MATH  Google Scholar 

  25. S.L. Kleiman, D. Laksov, Schubert calculus. Am. Math. Mon. 79, 1061–1082 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Laksov, Schubert calculus and equivariant cohomology of grassmannians. Adv. Math. 217, 1869–1888 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Laksov, The formalism of Equivariant Schubert Calculus. Algebra Number Theory 3 (6), 711–727 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Laksov, A. Thorup, A determinantal formula for the exterior powers of the polynomial ring. Indiana Univ. Math. J. 56 (2), 825–845 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Laksov, A. Thorup, Schubert calculus on grassmannians and exterior products. Indiana Univ. Math. J. 58 (1), 283–300 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Laksov, A. Thorup, Splitting algebras and Schubert calculus. Indiana Univ. Math. J. 61 (3), 1253–1312 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Li, V. Ravikumar, Equivariant Pieri rules for isotropic Grassmannians. Math. Ann. (2015). doi:10.1007/s00208-015-1266-0

    MATH  Google Scholar 

  32. I.G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979)

    MATH  Google Scholar 

  33. L. Manivel, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, translated from the 1998 French original by John R. Swallow. SMF/AMS Texts and Monographs, vol. 6. Cours Spécialisés [Specialized Courses], vol. 3 (American Mathematical Society/Société Mathématique de France, Providence/Paris, 2001)

    Google Scholar 

  34. J.W. Milnor, J.D. Stasheff, Characteristic Classes, Study 76 (Princeton University Press, Princeton, 1974)

    MATH  Google Scholar 

  35. H. Niederhausen, Catalan Traffic at the Beach. Electron. J. Comb. 9 (R33), 1–17 (2002)

    MathSciNet  MATH  Google Scholar 

  36. K. Ranestad, Private communication. Stockholm (2005)

    Google Scholar 

  37. T. Santiago, Catalan Traffic and integrals on the Grassmannian of lines. Discret. Math. 308, 148–152 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. I. Scherbak, Gaudin’s model and the generating function of the Wroński map. Geometry and topology of caustic–CAUSTICS ’02. Banach Center Publication, vol. 62 (Polish Academy of Sciences, Warsaw, 2004), pp. 249–262

    Google Scholar 

  39. B. Shapiro, Algebro-geometric aspects of Heine–Stieltjes theory. J. Lond. Math. Soc. (2) 83 (1), 36–56 (2011)

    Google Scholar 

  40. B. Shapiro, M. Shapiro, Linear ordinary differential equations and Schubert calculus, in Proceedings of the Gökova Geometry–Topology Conference 2010 (International Press, Somerville, MA, 2011), pp. 79–87

    MATH  Google Scholar 

  41. I. Vainsencher, Classes Characteristicas em Geométria Algebrica. 15 Colóquio Brasileiro de Matemática, Poços de Caldas-Brazil (1985)

    Google Scholar 

  42. A. Weber, Equivariant chern classes and localization theorem. J. Singul. 5, 153–176 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gatto, L., Salehyan, P. (2016). Schubert Derivations. In: Hasse-Schmidt Derivations on Grassmann Algebras. IMPA Monographs, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-31842-4_5

Download citation

Publish with us

Policies and ethics