Skip to main content

Abstract

Understanding and respecting nature will be beneficial to the environment and can produce sustainable and green technology. Therefore, energy recovery from biological processes needs to be considered because it always respects the nature and the biological or environmental system. This chapter will discuss further about energy production by micro-organisms such as bacterium and algae. Consequently, knowledge and principle about those micro-organisms need to be understood especially regarding the type and mechanism of those micro-organisms to produce recovery energy. This chapter starts with introducing the micro-organisms that are capable of producing and recovering energy. Then, it is followed by the next section, the mechanism and production from biological process, which are considered as energy recovery such as methane, hydrogen and biofuel production. Then, the tools for supporting biological system to produce energy recovery, such as bioreactor and ponds, are discussed in the next section. Subsequently, food for micro-organism, also known as substrate, to produce energy recovery is also discussed in more detail. Finally, sustainability of energy recovery by biological process is highlighted at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Research Council (2010) Advancing the science of climate change. National Academy Press, Washington, p 3

    Google Scholar 

  2. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.tibtech.2007.12.002

    Article  Google Scholar 

  3. Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50(7):1834–1840. doi:10.1016/j.enconman.2009.03.001

    Article  Google Scholar 

  4. Hollar S (2012) A closer look at bacteria, algae, and protozoa. USA, Britannica Educational Publishing, New York

    Google Scholar 

  5. Vedrenne F, Beline F, Dabert P, Bernet N (2008) The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresour Technol 99(2000):146–155

    Article  Google Scholar 

  6. Kaparaju PLN, Rintala JA (2008) Effects of solid-liquid separation on recovering residual methane and nitrogen from digested dairy cow manure. Bioresour Technol 99(2008):120–127

    Article  Google Scholar 

  7. Moller HB, Sommer SG, Ahring BK (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26(2004):485–495

    Article  Google Scholar 

  8. Raposo F, Banks CJ, Siegert I, Heaven S, Borja R (2006) Influence of inoculums to substrate ratio on the biochemical methane potential of maize in batch tests. Short communication. Process Biochem 41(2006):1444–1450

    Article  Google Scholar 

  9. Pereira CPP, Zeeman G, Zhao J, Ekmeci B, Lier JBV (2009) Implications of reactor type and conditions on first order hydrolysis rate assessment of maize silage. Water Sci Technol

    Google Scholar 

  10. Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and feestocks. Biomass Bioenergy 5(1):95–111

    Article  Google Scholar 

  11. Yu H, Wilson F, Tay J-H (1998) Kinetic analysis of an anaerobic filter treating soybean wastewater. Water Res 32(11):3341–3352

    Article  Google Scholar 

  12. Siles JA, Martin MDLA, Martin A, Raposo F, Borja R (2007) Anaerobic digestion of wastewater derived from the pressing of orange peel generated in orange juice production. J Agric Food Chem 55(2007):1905–1914

    Article  Google Scholar 

  13. Frederic S, Buffiere P, Marty B, Delgenes J-P (2007) Importance of waste composition on the kinetics of hydrolysis and methane production in anaerobic digestion: soluble and non-soluble fractions. In: 11th IWA world congress on anaerobic digestion, 23–27 Sept, 2007, Brisbane, Australia

    Google Scholar 

  14. Aspe E, Marti MC, Roeckel M (1997) Anaerobic treatment of fishery wastewater using a marine sediment inoculums. Water Res 31(9):2147–2160

    Article  Google Scholar 

  15. Mata-Alvarez J, Cecchi F, Pavan P, Llabres P (1990) The performances of digesters treating the organic fraction of municipal solid wastes differently sorted. Biol Wastes 33(1990):181–199

    Article  Google Scholar 

  16. Forster-Carneiro T, Perez M, Romero LI, Sales D (2006) Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: focusing on the inoculums sources. Bioresour Technol, 98(17):3195–3203

    Google Scholar 

  17. Davidsson A, Gruvberger C, Christensen TH, Hansen TL, Jansen LlC (2007) Methane yield of source-sorted organic fraction of municipal solids waste. Waste Management, 27: 406–414

    Google Scholar 

  18. Carucci G, Carrasco F, Trifoni K, Majone M, Beccari M (2005) Anaerobic digestion of food industry wastes: effect of codigestion on methane yield. J Enviorn Eng 131(7):1037–1045

    Article  Google Scholar 

  19. Carballa M, Urra J, Munoz F, Valdebenito R, Poirrier P, Chamy R (2007) Energy recovery from fruit and vegetable solid wastes. In: 11th IWA world congress on anaerobic digestion, 23–27 Sept, 2007, Brisbane, Australia

    Google Scholar 

  20. De Baere L (2000) Anaerobic digestion of solid waste: state of the art. Water Sci Technol 41(3):283–290

    Google Scholar 

  21. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimization of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  Google Scholar 

  22. Demirer GN, Chen S (2004) Effect of retention time and organic loading rate on anaerobic biogasification of dairy manure. J Chem Technol Biotechnol 79:1381–1387

    Article  Google Scholar 

  23. Karagiannidis A, Perkoulidis G (2009) A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes. Bioresour Technol 100:2355–2360

    Article  Google Scholar 

  24. Ferreira M, Paula I, Malico I (2012) Biogas in Portugal: status and public policies in a European context. Energy Policy 43:267–274

    Article  Google Scholar 

  25. Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014) Enhanced methane production of Chlorella vulgaris and Chlamydomonasreinhardtii by hydrolytic enzymes addition. Energy Convers Manag 85:551–557. doi:10.1016/j.enconman.2014.04.097

    Article  Google Scholar 

  26. Dunn S (2003) Hydrogen futures: toward a sustainable energy system JA Peterson, ed

    Google Scholar 

  27. US Department of Energy 2007. Hydrogen, fuel cells and infrastructure technologies program

    Google Scholar 

  28. Johnston B, Mayo MC, Khare A (2005) Hydrogen: the energy source for the 21st century. Technovation 25(6):569–585

    Article  Google Scholar 

  29. Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27(6):1051–1060

    Article  Google Scholar 

  30. Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32(5):379–407

    Google Scholar 

  31. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582

    Article  Google Scholar 

  32. Karadag D, Köroğlu OE, Ozkaya B, Cakmakci M, Heaven S, Banks C (2014) A review on fermentative hydrogen production from dairy industry wastewater. J Chem Technol Biotechnol 89(11):1627–1636

    Article  Google Scholar 

  33. Guo L, Li XM, Zeng GM, Zhou Y (2010) Effective hydrogen production using waste sludge and its filtrate. Energy 35(9):3557–3562

    Article  Google Scholar 

  34. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42(1):35–53

    Article  Google Scholar 

  35. Saritha M, Arora A, Lata (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52(2):122–130

    Google Scholar 

  36. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  Google Scholar 

  37. Das D, Veziroglu T, Veziroä TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Article  Google Scholar 

  38. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18(12):506–511

    Article  Google Scholar 

  39. Miura Y (1995) Hydrogen production by biophotolysis based on microalgal photosynthesis. Process Biochem 30(1):1–7

    Article  Google Scholar 

  40. Benemann JR, Berenson JA, Kaplan NO, Kamen MD (1973) Hydrogen evolution by a chloroplast-ferredoxin-hydrogenase system. In: Proceedings of the National Academy of Sciences of the United States of America, vol 70(8), pp 2317–2320

    Google Scholar 

  41. Cardoso V, Romão BB, Silva FTM, Santos JG, Batista FRX, Ferreira JS (2014) Hydrogen production by dark fermentation. Chem Eng Trans 38:481–486

    Google Scholar 

  42. Guo YC, Dai Y, Bai YX, Li YH, Fan YT, Hou HW (2014) Co-producing hydrogen and methane from higher-concentration of corn stalk by combining hydrogen fermentation and anaerobic digestion. Int J Hydrogen Energy 39(26):14204–14211

    Article  Google Scholar 

  43. Guo XM, Trably E, Latrille E, Carrre H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35(19):10660–10673

    Article  Google Scholar 

  44. Yokoi H, Saitsu A, Uchida H, Hirose JUN, Hayashi S, Takasaki Y (2001) Microbial Hydrogen production from sweet potato starch residue. J Biosci Bioeng 91(1):58–63

    Article  Google Scholar 

  45. Tan D (2015) Toyota makes available hydrogen fuel cell patents used in the Mirai, royalty free until 2020. Paultan.org. Available http://paultan.org/2015/01/07/toyota-makes-available-hydrogen-fuel-cell-patents-royalty-free/

  46. Mike Chino (2010) MIT researchers harness viruses to split water. Inhabitat.com. Available http://inhabitat.com/mit-researchers-harness-viruses-to-split-water/. Accessed 9 Aug 2015

  47. Shinnar R (2003) The hydrogen economy, fuel cells, and electric cars. Technol Soc 25(4):455–476. doi:10.1016/j.techsoc.2003.09.024

    Article  Google Scholar 

  48. Marbán G, Valdés-Solís T (2007) Towards the hydrogen economy? Int J Hydrogen Energy 32(12):1625–1637

    Article  Google Scholar 

  49. Cheong DY, Hansen CL (2006) Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process Biochem 41(8):1736–1745. doi:10.1016/j.procbio.2006.03.014

    Article  Google Scholar 

  50. Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15(1):584–593. doi:10.1016/j.rser.2010.09.018

    Google Scholar 

  51. Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR (2014) Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnol Biofuels 7(1):84. doi:10.1186/1754-6834-7-84

    Article  Google Scholar 

  52. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. doi:10.1263/jbb.101.87

    Article  Google Scholar 

  53. Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009

    Article  Google Scholar 

  54. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232. doi:10.1016/j.rser.2009.07.020

    Google Scholar 

  55. Xia A, Cheng J, Song W, Su H, Ding L, Lin R, Lu H, Liu J, Zhou J, Cen K (2015) Fermentative hydrogen production using algal biomass as feedstock. Renew Sustain Energy Rev 51:209–230

    Article  Google Scholar 

  56. Ullah K, Ahmad M, Sofia Sharma VK, Lu P, Harvey A, Zafar M, Sultana S (2015) Assesing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel 143:414–423

    Article  Google Scholar 

  57. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173

    Article  Google Scholar 

  58. Ullah K, Sharma VK, Dhingra S, Braccio G, Ahmad M, Sofia S (2015) Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew Sustain Energy Rev 51:682–698

    Article  Google Scholar 

  59. Chen WH, Lin BJ, Huang MY, Chang JS (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol 184:314–327

    Article  Google Scholar 

  60. Tekin K, Karagoz S, Bektas S (2014) A review of hydrothermal biomass processing. Renew Sustain Energy 40:673–687

    Article  Google Scholar 

  61. Yedro FM, Cantero DA, Pascual M, Garcia-Serna J, Cocero MJ (2015) Hydrothermal fractionation of woody biomass: lignin effect on sugars recovery. Bioresour Technol 191:124–132

    Article  Google Scholar 

  62. Vassilev ST, Vassileva CG, Vassilev VS (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 330–350

    Google Scholar 

  63. Yang X, Choi HS, Park C, Kim SW (2015) Current states and prospects of organic waste utilization for biorefineries. Renew Sustain Energy Rev 49:335–349

    Article  Google Scholar 

  64. UN-Energy (2006) Sustainable bioenergy: a framework for decision makers

    Google Scholar 

  65. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131. doi:10.1016/j.tibtech.2007.12.002

    Article  Google Scholar 

  66. Fang HHP, Li C, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31(6):683–692. doi:10.1016/j.ijhydene.2005.07.005

    Article  Google Scholar 

  67. Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrogen Energy 34(8):3277–3287. doi:10.1016/j.ijhydene.2009.02.010

    Article  Google Scholar 

  68. Skonieczny MT, Yargeau V (2009) Biohydrogen production from wastewater by Clostridium beijerinckii: effect of pH and substrate concentration. Int J Hydrogen Energy 34(8):3288–3294. doi:10.1016/j.ijhydene.2009.01.044

    Article  Google Scholar 

  69. Van Niel EWJ, Budde MAW, De Haas G, Van der Wal FJ, Claassen PAM, Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptorsaccharolyticus and Thermotogaelfii. Int J Hydrogen Energy, 27(11–12):1391–1398. doi:10.1016/S0360-3199(02)00115-5

    Google Scholar 

  70. Nanda S, Azargohar R, Dalai AJ, Kozinski JA (2015) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sustain Energy Rev 50:925–941

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank The Research University Grant (1001/PTEKIND/811262) from Universiti Sains Malaysia and Fundamental Research Grant (201/PTEKIND/6711373) from Ministry of Higher Education, Malaysia for financial support extended for this compilation and write up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husnul Azan Tajarudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tajarudin, H.A., Tamat, M.R., Othman, M.F., Serri, N.A., Zaman, N.Q. (2016). Energy Recovery by Biological Process. In: Ahmad, M., Ismail, M., Riffat, S. (eds) Renewable Energy and Sustainable Technologies for Building and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31840-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31840-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31838-7

  • Online ISBN: 978-3-319-31840-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics