Skip to main content

Stem Cell Proteomics

  • Chapter
  • First Online:
Manual of Cardiovascular Proteomics

Abstract

Recent advances in stem cell and proteomic technology carry tremendous potential to impact our understanding of mechanistic underpinnings and fundamental pathophysiology of cardiovascular disease. In this chapter, we introduce investigators new to these disciplines to the various types of stem cells relevant to cardiovascular biology and how, when combined with state-of-the-art proteomic analyses, they may be exploited for mechanistic and translational studies related to cardiomyopathies, coronary atherosclerotic disease, and heart failure. Although the potential of these emerging technologies is just beginning to be explored, this chapter aims to illustrate how integration of novel stem cell and proteomic technologies is poised to make significant contributions to future advanced therapies and diagnostics in cardiovascular medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. Epub 2006/08/15.

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez F, Boue S, Izpisua Belmonte JC. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet. 2011;12(4):231–42.

    Article  CAS  PubMed  Google Scholar 

  4. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20. Epub 2007/11/22.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. Epub 2007/11/24.

    Article  CAS  PubMed  Google Scholar 

  6. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A. 2011;108(34):14234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rony IK, Baten A, Bloomfield JA, Islam ME, Billah MM, Islam KD. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Prolif. 2015;48(2):140–56. Epub 2015/02/04.

    Article  CAS  PubMed  Google Scholar 

  9. Cuende N, Rico L, Herrera C. Concise review: bone marrow mononuclear cells for the treatment of ischemic syndromes: medicinal product or cell transplantation? Stem Cells Transl Med. 2012;1(5):403–8. Epub 2012/12/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol. 2011;50(2):280–9. Epub 2010/08/24.

    Article  CAS  PubMed  Google Scholar 

  12. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015;116(8):1413–30. Epub 2015/04/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Afzal MR, Samanta A, Shah ZI, Jeevanantham V, Abdel-Latif A, Zuba-Surma EK, et al. Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circ Res. 2015;117(6):558–75. Epub 2015/07/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seaberg RM, van der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 2003;26(3):125–31. Epub 2003/02/20.

    Article  CAS  PubMed  Google Scholar 

  15. Chong JJ, Forte E, Harvey RP. Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells. Stem Cell Res. 2014;13(3 Pt B):592–614. Epub 2014/12/03.

    Article  CAS  PubMed  Google Scholar 

  16. Martinez EC, Kofidis T. Adult stem cells for cardiac tissue engineering. J Mol Cell Cardiol. 2011;50(2):312–9. Epub 2010/08/17.

    Article  CAS  PubMed  Google Scholar 

  17. Naumova AV, Modo M, Moore A, Frank JA, Murry CE. Response to cardiac regeneration validated. Nat Biotechnol. 2015;33(6):587. Epub 2015/06/10.

    Article  CAS  PubMed  Google Scholar 

  18. Malliaras K, Marban E. Cardiac regeneration validated. Nat Biotechnol. 2015;33(6):587. Epub 2015/06/10.

    Article  CAS  PubMed  Google Scholar 

  19. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154(4):827–42. Epub 2013/08/21.

    Article  CAS  PubMed  Google Scholar 

  20. van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337–41. Epub 2014/05/09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Psaltis PJ, Simari RD. Vascular wall progenitor cells in health and disease. Circ Res. 2015;116(8):1392–412. Epub 2015/04/11.

    Article  CAS  PubMed  Google Scholar 

  22. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86. Epub 2010/08/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8. Epub 2012/04/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A. 2013;110(14):5588–93. Epub 2013/03/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamakawa H, Ieda M. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming. Int Heart J. 2015;56(1):1–5. Epub 2015/03/07.

    Article  PubMed  Google Scholar 

  26. Sadahiro T, Yamanaka S, Ieda M. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res. 2015;116(8):1378–91. Epub 2015/04/11.

    Article  CAS  PubMed  Google Scholar 

  27. Batalov I, Feinberg AW. Differentiation of cardiomyocytes from human pluripotent stem cells using monolayer culture. Biomark Insights. 2015;10 Suppl 1:71–6. Epub 2015/06/09.

    PubMed  PubMed Central  Google Scholar 

  28. Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Adv Drug Deliv Rev. 2015;96:3–17. Epub 2015/05/20.

    Google Scholar 

  29. Cao N, Liang H, Huang J, Wang J, Chen Y, Chen Z, et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013;23(9):1119–32. Epub 2013/07/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11(8):855–60. Epub 2014/06/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–75. Epub 2012/12/22.

    Article  CAS  PubMed  Google Scholar 

  32. Hwang HS, Kryshtal DO, Feaster TK, Sanchez-Freire V, Zhang J, Kamp TJ, et al. Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. J Mol Cell Cardiol. 2015;85:79–88. Epub 2015/05/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu R, Blazeski A, Poon E, Costa KD, Tung L, Boheler KR. Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2014;5(5):117. Epub 2015/02/18.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2013;31(5):829–37. Epub 2013/01/29.

    Article  CAS  PubMed  Google Scholar 

  35. Vunjak Novakovic G, Eschenhagen T, Mummery C. Myocardial tissue engineering: in vitro models. Cold Spring Harb Perspect Med. 2014;4(3). a014076. Epub 2014/03/05.

    Google Scholar 

  36. Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C. Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med. 2013;3(11). a014027. Epub 2013/11/05.

    Google Scholar 

  37. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res. 2011;109(1):47–59. Epub 2011/05/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muscari C, Giordano E, Bonafe F, Govoni M, Guarnieri C. Strategies affording prevascularized cell-based constructs for myocardial tissue engineering. Stem Cells Int. 2014;2014:434169. Epub 2014/02/11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, et al. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells. 2015;33(7):2148–57. Epub 2015/04/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wen JY, Wei CY, Shah K, Wong J, Wang C, Chen HS. Maturation-based model of arrhythmogenic right ventricular dysplasia using patient-specific induced pluripotent stem cells. Circ J. 2015;79(7):1402–8. Epub 2015/05/15.

    Article  PubMed  Google Scholar 

  41. Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol. 2014;72:296–304. Epub 2014/04/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keung W, Boheler KR, Li RA. Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2014;5(1):17. Epub 2014/01/29.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cheung C, Bernardo AS, Pedersen RA, Sinha S. Directed differentiation of embryonic origin-specific vascular smooth muscle subtypes from human pluripotent stem cells. Nat Protoc. 2014;9(4):929–38. Epub 2014/03/29.

    Article  CAS  PubMed  Google Scholar 

  44. Orlova VV, Drabsch Y, Freund C, Petrus-Reurer S, van den Hil FE, Muenthaisong S, et al. Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler Thromb Vasc Biol. 2014;34(1):177–86. Epub 2013/10/26.

    Article  CAS  PubMed  Google Scholar 

  45. Theodoris CV, Li M, White MP, Liu L, He D, Pollard KS, et al. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell. 2015;160(6):1072–86. Epub 2015/03/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dash BC, Jiang Z, Suh C, Qyang Y. Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochem J. 2015;465(2):185–94. Epub 2015/01/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim KY, et al. Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation. 2012;126(14):1695–704. Epub 2012/08/24.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell. 2011;8(1):31–45. Epub 2010/12/28.

    Article  CAS  PubMed  Google Scholar 

  49. Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature. 2011;472(7342):221–5. Epub 2011/02/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111(3):344–58. Epub 2012/07/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sallam K, Kodo K, Wu JC. Modeling inherited cardiac disorders. Circ J. 2014;78(4):784–94. Epub 2014/03/19.

    Article  CAS  PubMed  Google Scholar 

  52. Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 2010;4(2):107–16. Epub 2009/12/26.

    Article  CAS  PubMed  Google Scholar 

  53. Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 2013;127(16):1677–91. Epub 2013/03/23.

    Article  CAS  PubMed  Google Scholar 

  54. Cerbini T, Luo Y, Rao MS, Zou J. Transfection, selection, and colony-picking of human induced pluripotent stem cells TALEN-targeted with a GFP gene into the AAVS1 safe harbor. J Vis Exp. 2015;(96). doi:10.3791/52504. Epub 2015/03/06.

  55. Hatada S, Subramanian A, Mandefro B, Ren S, Kim HW, Tang J, et al. Low-dose irradiation enhances gene targeting in human pluripotent stem cells. Stem Cells Transl Med. 2015;4(9):998–1010. Epub 2015/07/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Merkle FT, Neuhausser WM, Santos D, Valen E, Gagnon JA, Maas K, et al. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep. 2015;11(6):875–83. Epub 2015/05/06.

    Article  CAS  PubMed  Google Scholar 

  57. Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep. 2015;5:8883. Epub 2015/03/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jahnke HG, Steel D, Fleischer S, Seidel D, Kurz R, Vinz S, et al. A novel 3D label-free monitoring system of hES-derived cardiomyocyte clusters: a step forward to in vitro cardiotoxicity testing. PLoS One. 2013;8(7):e68971. Epub 2013/07/19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, et al. Concise review: cardiac disease modeling using induced pluripotent stem cells. Stem Cells. 2015;33(9):2643–51. Epub 2015/06/03.

    Article  PubMed  Google Scholar 

  60. Ng KM, Tse HF. Modeling hereditary cardiac disease with patient-specific-induced pluripotent stem cells: opportunities and concerns. J Cardiovasc Pharmacol. 2012;60(4):406–7. Epub 2012/06/02.

    Article  CAS  PubMed  Google Scholar 

  61. Sallam K, Li Y, Sager PT, Houser SR, Wu JC. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 2015;116(12):1989–2004. Epub 2015/06/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kamdar F, Klaassen Kamdar A, Koyano-Nakagawa N, Garry MG, Garry DJ. Cardiomyopathy in a dish: using human inducible pluripotent stem cells to model inherited cardiomyopathies. J Card Fail. 2015;21(9):761–70. Epub 2015/05/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fisher SA, Brunskill SJ, Doree C, Mathur A, Taggart DP, Martin-Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev. 2014;(4):CD007888. Epub 2014/04/30.

    Google Scholar 

  64. Clifford DM, Fisher SA, Brunskill SJ, Doree C, Mathur A, Watt S, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2012;(2):CD006536. Epub 2012/02/18.

    Google Scholar 

  65. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 1995;92(4):785–9. Epub 1995/08/15.

    Article  CAS  PubMed  Google Scholar 

  66. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287(10):1308–20. Epub 2002/03/12.

    Article  PubMed  Google Scholar 

  67. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(24):e783–831. Epub 2011/11/10.

    Article  PubMed  Google Scholar 

  68. Bezzina CR, Lahrouchi N, Priori SG. Genetics of sudden cardiac death. Circ Res. 2015;116(12):1919–36. Epub 2015/06/06.

    Article  CAS  PubMed  Google Scholar 

  69. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20(6):616–23. Epub 2014/05/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roden DM, Hong CC. Stem cell-derived cardiomyocytes as a tool for studying proarrhythmia: a better canary in the coal mine? Circulation. 2013;127(16):1641–3. Epub 2013/03/23.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tanaka A, Yuasa S, Node K, Fukuda K. Cardiovascular disease modeling using patient-specific induced pluripotent stem cells. Int J Mol Sci. 2015;16(8):18894–922. Epub 2015/08/15.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363(15):1397–409. Epub 2010/07/28.

    Article  CAS  PubMed  Google Scholar 

  73. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471(7337):230–4. Epub 2011/02/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381(9862):242–55. Epub 2012/08/10.

    Article  PubMed  Google Scholar 

  75. Fananapazir L. Advances in molecular genetics and management of hypertrophic cardiomyopathy. JAMA. 1999;281(18):1746–52. Epub 1999/05/18.

    Article  CAS  PubMed  Google Scholar 

  76. Tardiff JC. Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev. 2005;10(3):237–48. Epub 2006/01/18.

    Article  CAS  PubMed  Google Scholar 

  77. Schaub MC, Hefti MA, Zuellig RA, Morano I. Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms. Cardiovasc Res. 1998;37(2):381–404. Epub 1998/06/06.

    Article  CAS  PubMed  Google Scholar 

  78. Petzhold D, Lossie J, Keller S, Werner S, Haase H, Morano I. Human essential myosin light chain isoforms revealed distinct myosin binding, sarcomeric sorting, and inotropic activity. Cardiovasc Res. 2011;90(3):513–20. Epub 2011/01/26.

    Article  CAS  PubMed  Google Scholar 

  79. Schober T, Huke S, Venkataraman R, Gryshchenko O, Kryshtal D, Hwang HS, et al. Myofilament Ca sensitization increases cytosolic Ca binding affinity, alters intracellular Ca homeostasis, and causes pause-dependent Ca-triggered arrhythmia. Circ Res. 2012;111(2):170–9. Epub 2012/06/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nagata M, Shimizu M, Ino H, Yamaguchi M, Hayashi K, Taki J, et al. Hemodynamic changes and prognosis in patients with hypertrophic cardiomyopathy and abnormal blood pressure responses during exercise. Clin Cardiol. 2003;26(2):71–6. Epub 2003/03/11.

    Article  PubMed  Google Scholar 

  81. Wilson PW. Established risk factors and coronary artery disease: the Framingham Study. Am J Hypertens. 1994;7(7 Pt 2):7S–12. Epub 1994/07/01.

    CAS  PubMed  Google Scholar 

  82. Lloyd-Jones DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary heart disease. Lancet. 1999;353(9147):89–92. Epub 1999/02/19.

    Article  CAS  PubMed  Google Scholar 

  83. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation. 2001;103(13):1813–8. Epub 2001/04/03.

    Article  CAS  PubMed  Google Scholar 

  84. Stempien-Otero A, Helterline D, Plummer T, Farris S, Prouse A, Polissar N, et al. Mechanisms of bone marrow-derived cell therapy in ischemic cardiomyopathy with left ventricular assist device bridge to transplant. J Am Coll Cardiol. 2015;65(14):1424–34. Epub 2015/04/11.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Farris S, Stempien-Otero A. Allogeneic precursor cells for systolic heart failure: a need for mechanisms in humans. Circ Res. 2015;117(6):494–7. Epub 2015/09/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Michel JB, Li Z, Lacolley P. Smooth muscle cells and vascular diseases. Cardiovasc Res. 2012;95(2):135–7. Epub 2012/05/29.

    Article  CAS  PubMed  Google Scholar 

  87. Wang F, Lerman A, Herrmann J. Dysfunction of the ubiquitin-proteasome system in atherosclerotic cardiovascular disease. Am J Cardiovasc Dis. 2015;5(1):83–100. Epub 2015/06/13.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Willis MS, Townley-Tilson WH, Kang EY, Homeister JW, Patterson C. Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circ Res. 2010;106(3):463–78. Epub 2010/02/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bertoluci MC, Ce GV, da Silva AM, Wainstein MV, Boff W, Punales M. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes. World J Diabetes. 2015;6(5):679–92. Epub 2015/06/13.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (review). Int J Mol Med. 2013;32(4):763–7. Epub 2013/07/19.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Koga J, Aikawa M. Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases. Vascul Pharmacol. 2012;57(1):24–8. Epub 2012/03/10.

    Article  CAS  PubMed  Google Scholar 

  92. Lin CS, Lue TF. Defining vascular stem cells. Stem Cells Dev. 2013;22(7):1018–26. Epub 2013/01/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gomez D, Owens GK. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res. 2012;95(2):156–64. Epub 2012/03/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang L, Hoffman JA, Ruoslahti E. Molecular profiling of heart endothelial cells. Circulation. 2005;112(11):1601–11. Epub 2005/09/08.

    Article  CAS  PubMed  Google Scholar 

  95. Stroncek JD, Grant BS, Brown MA, Povsic TJ, Truskey GA, Reichert WM. Comparison of endothelial cell phenotypic markers of late-outgrowth endothelial progenitor cells isolated from patients with coronary artery disease and healthy volunteers. Tissue Eng Part A. 2009;15(11):3473–86. Epub 2009/05/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu R, Leslie KL, Martin KA. Epigenetic regulation of smooth muscle cell plasticity. Biochim Biophys Acta. 2015;1849(4):448–53. Epub 2014/06/18.

    Article  CAS  PubMed  Google Scholar 

  97. Bhavsar PK, Dhoot GK, Cumming DV, Butler-Browne GS, Yacoub MH, Barton PJ. Developmental expression of troponin I isoforms in fetal human heart. FEBS Lett. 1991;292(1–2):5–8. Epub 1991/11/04.

    CAS  PubMed  Google Scholar 

  98. Bedada FB, Chan SS, Metzger SK, Zhang L, Zhang J, Garry DJ, et al. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cell Rep. 2014;3(4):594–605. Epub 2014/11/02.

    Article  CAS  Google Scholar 

  99. Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev. 2007;87(2):521–44. Epub 2007/04/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Deb A. Cell-cell interaction in the heart via Wnt/beta-catenin pathway after cardiac injury. Cardiovasc Res. 2014;102(2):214–23. Epub 2014/03/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Abramochkin DV, Lozinsky IT, Kamkin A. Influence of mechanical stress on fibroblast-myocyte interactions in mammalian heart. J Mol Cell Cardiol. 2014;70:27–36. Epub 2014/01/07.

    Article  CAS  PubMed  Google Scholar 

  102. Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta. 2013;1832(12):2414–24. Epub 2013/09/17.

    Article  CAS  PubMed  Google Scholar 

  103. Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113(6):709–24. Epub 2013/08/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 2010;122(25):2727–35. Epub 2010/12/22.

    Article  PubMed  Google Scholar 

  105. Bayeva M, Sawicki KT, Butler J, Gheorghiade M, Ardehali H. Molecular and cellular basis of viable dysfunctional myocardium. Circ Heart Fail. 2014;7(4):680–91. Epub 2014/07/17.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373(11):1021–31. Epub 2015/09/01.

    Google Scholar 

  107. Yang KC, Kyle JW, Makielski JC, Dudley Jr SC. Mechanisms of sudden cardiac death: oxidants and metabolism. Circ Res. 2015;116(12):1937–55. Epub 2015/06/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20. Epub 2012/01/28.

    Article  CAS  PubMed  Google Scholar 

  109. Chong JJ, Murry CE. Cardiac regeneration using pluripotent stem cells – progression to large animal models. Stem Cell Res. 2014;13(3 Pt B):654–65. Epub 2014/08/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273–7. Epub 2014/04/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dixit P, Katare R. Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther. 2015;6:26. Epub 2015/04/18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Rosen MR, Myerburg RJ, Francis DP, Cole GD, Marban E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J Am Coll Cardiol. 2014;64(9):922–37. Epub 2014/08/30.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med. 2011;17(9):475–84. Epub 2011/06/28.

    Article  CAS  PubMed  Google Scholar 

  114. Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10(1):16–28. Epub 2012/01/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL, et al. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods. 2011;8(12):1037–40. Epub 2011/10/25.

    Article  CAS  PubMed  Google Scholar 

  116. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524–8. Epub 2008/04/25.

    Article  CAS  PubMed  Google Scholar 

  117. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109(27):E1848–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One. 2011;6(8):e23657. Epub 2011/08/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Willems E, Spiering S, Davidovics H, Lanier M, Xia Z, Dawson M, et al. Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ Res. 2011;109(4):360–4. Epub 2011/07/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang Q, Jiang J, Han P, Yuan Q, Zhang J, Zhang X, et al. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res. 2011;21(4):579–87. Epub 2010/11/26.

    Article  CAS  PubMed  Google Scholar 

  121. Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol. 2008;26(3):313–5.

    Article  CAS  PubMed  Google Scholar 

  122. Karakikes I, Senyei GD, Hansen J, Kong CW, Azeloglu EU, Stillitano F, et al. Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med. 2014;3(1):18–31. Epub 2013/12/11.

    Article  CAS  PubMed  Google Scholar 

  123. Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 2009;460(7251):113–7. Epub 2009/07/03.

    Article  CAS  PubMed  Google Scholar 

  124. Hattori F, Chen H, Yamashita H, Tohyama S, Satoh YS, Yuasa S, et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods. 2010;7(1):61–6. Epub 2009/12/01.

    Article  CAS  PubMed  Google Scholar 

  125. Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2013;12(1):127–37. Epub 2012/11/22.

    Article  CAS  PubMed  Google Scholar 

  126. Kropp EM, Oleson BJ, Broniowska KA, Bhattacharya S, Chadwick AC, Diers AR, et al. Inhibition of an NAD+ salvage pathway provides efficient and selective toxicity to human pluripotent stem cells. Stem Cells Transl Med. 2015;4(5):483–93. Epub 2015/04/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Burridge PW, Holmström A, Wu JC. Chemically defined culture and cardiomyocyte differentiation of – human pluripotent stem cells. Curr Protoc Hum Genet. 2015;87:21.3.1–15.

    Article  Google Scholar 

  128. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19(8):998–1004. Epub 2013/08/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lindsey ML, Mayr M, Gomes AV, Delles C, Arrell DK, Murphy AM, et al. Transformative impact of proteomics on cardiovascular health and disease: a scientific statement from the American Heart Association. Circulation. 2015;132(9):852–72. Epub 2015/07/22.

    Article  CAS  PubMed  Google Scholar 

  130. Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol. 2006;169(2):338–46. Epub 2006/08/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Van Hoof D, Dormeyer W, Braam SR, Passier R, Monshouwer-Kloots J, Ward-van Oostwaard D, et al. Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J Proteome Res. 2010;9(3):1610–8.

    Article  PubMed  CAS  Google Scholar 

  132. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011;29(11):1011–8. Epub 2011/10/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kropp EM, Bhattacharya S, Waas M, Chuppa SL, Hadjantonakis AK, Boheler KR, et al. N-glycoprotein surfaceomes of four developmentally distinct mouse cell types. Proteomics Clin Appl. 2014;8(7–8):603–9. Epub 2014/06/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Boheler KR, Bhattacharya S, Kropp EM, Chuppa S, Riordon DR, Bausch-Fluck D, et al. A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem Cell Rep. 2014;3(1):185–203. Epub 2014/07/30.

    Article  CAS  Google Scholar 

  135. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–6. Epub 2006/12/02.

    Article  CAS  PubMed  Google Scholar 

  136. Elschenbroich S, Kim Y, Medin JA, Kislinger T. Isolation of cell surface proteins for mass spectrometry-based proteomics. Expert Rev Proteomics. 2010;7(1):141–54. Epub 2010/02/04.

    Article  CAS  PubMed  Google Scholar 

  137. Cordwell SJ, Thingholm TE. Technologies for plasma membrane proteomics. Proteomics. 2010;10(4):611–27. Epub 2009/10/17.

    Article  CAS  PubMed  Google Scholar 

  138. Sun B, Hood L. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins. J Proteome Res. 2014;13(6):2705–14. Epub 2014/04/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol. 2009;27(4):378–86. Epub 2009/04/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gundry RL, Riordon DR, Tarasova Y, Chuppa S, Bhattacharya S, Juhasz O, et al. A cell surfaceome map for immunophenotyping and sorting pluripotent stem cells. Mol Cell Proteomics. 2012;11(8):303–16. Epub 2012/04/12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Zeng Y, Ramya TN, Dirksen A, Dawson PE, Paulson JC. High-efficiency labeling of sialylated glycoproteins on living cells. Nat Methods. 2009;6(3):207–9. Epub 2009/02/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ramya TN, Weerapana E, Cravatt BF, Paulson JC. Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans. Glycobiology. 2013;23(2):211–21. Epub 2012/10/17.

    Article  CAS  PubMed  Google Scholar 

  143. Lee SJ, Kim KH, Park JS, Jung JW, Kim YH, Kim SK, et al. Comparative analysis of cell surface proteins in chronic and acute leukemia cell lines. Biochem Biophys Res Commun. 2007;357(3):620–6. Epub 2007/04/24.

    Article  CAS  PubMed  Google Scholar 

  144. Weekes MP, Antrobus R, Lill JR, Duncan LM, Hor S, Lehner PJ. Comparative analysis of techniques to purify plasma membrane proteins. J Biomol Techn. 2010;21(3):108–15. Epub 2010/09/03.

    Google Scholar 

  145. Bausch-Fluck D, Hofmann A, Wollscheid B. Cell surface capturing technologies for the surfaceome discovery of hepatocytes. Methods Mol Biol. 2012;909:1–16. Epub 2012/08/21.

    CAS  PubMed  Google Scholar 

  146. Springer DL, Auberry DL, Ahram M, Adkins JN, Feldhaus JM, Wahl JH, et al. Characterization of plasma membrane proteins from ovarian cancer cells using mass spectrometry. Dis Markers. 2003;19(4–5):219–28. Epub 2004/07/20.

    CAS  PubMed  Google Scholar 

  147. Ghosh D, Krokhin O, Antonovici M, Ens W, Standing KG, Beavis RC, et al. Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res. 2004;3(4):841–50. Epub 2004/09/14.

    Article  CAS  PubMed  Google Scholar 

  148. Wang Y, Ao X, Vuong H, Konanur M, Miller FR, Goodison S, et al. Membrane glycoproteins associated with breast tumor cell progression identified by a lectin affinity approach. J Proteome Res. 2008;7(10):4313–25. Epub 2008/08/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. McDonald CA, Yang JY, Marathe V, Yen TY, Macher BA. Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics. 2009;8(2):287–301. Epub 2008/10/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim Y, Elschenbroich S, Sharma P, Sepiashvili L, Gramolini AO, Kislinger T. Use of colloidal silica-beads for the isolation of cell-surface proteins for mass spectrometry-based proteomics. Methods Mol Biol. 2011;748:227–41. Epub 2011/06/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rahbar AM, Fenselau C. Integration of Jacobson’s pellicle method into proteomic strategies for plasma membrane proteins. J Proteome Res. 2004;3(6):1267–77. Epub 2004/12/15.

    Article  CAS  PubMed  Google Scholar 

  152. Cortes LK, Vainauskas S, Dai N, McClung CM, Shah M, Benner JS, et al. Proteomic identification of mammalian cell surface derived glycosylphosphatidylinositol-anchored proteins through selective glycan enrichment. Proteomics. 2014;14(21–22):2471–84. Epub 2014/09/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Elortza F, Mohammed S, Bunkenborg J, Foster LJ, Nuhse TS, Brodbeck U, et al. Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. J Proteome Res. 2006;5(4):935–43. Epub 2006/04/11.

    Article  CAS  PubMed  Google Scholar 

  154. Tian Y, Koganti T, Yao Z, Cannon P, Shah P, Pietrovito L, et al. Cardiac extracellular proteome profiling and membrane topology analysis using glycoproteomics. Proteomics Clin Appl. 2014;8(7–8):595–602. Epub 2014/06/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11(4):M111.014647. Epub 2011/12/14.

    Article  PubMed  CAS  Google Scholar 

  156. Bendz M, Skwark M, Nilsson D, Granholm V, Cristobal S, Kall L, et al. Membrane protein shaving with thermolysin can be used to evaluate topology predictors. Proteomics. 2013;13(9):1467–80. Epub 2013/03/21.

    Article  CAS  PubMed  Google Scholar 

  157. Speers AE, Blackler AR, Wu CC. Shotgun analysis of integral membrane proteins facilitated by elevated temperature. Anal Chem. 2007;79(12):4613–20. Epub 2007/05/16.

    Article  CAS  PubMed  Google Scholar 

  158. Frei AP, Jeon OY, Kilcher S, Moest H, Henning LM, Jost C, et al. Direct identification of ligand-receptor interactions on living cells and tissues. Nat Biotechnol. 2012;30(10):997–1001. Epub 2012/09/18.

    Article  CAS  PubMed  Google Scholar 

  159. Frei AP, Moest H, Novy K, Wollscheid B. Ligand-based receptor identification on living cells and tissues using TRICEPS. Nat Protoc. 2013;8(7):1321–36. Epub 2013/06/15.

    Article  PubMed  CAS  Google Scholar 

  160. Elia G. Biotinylation reagents for the study of cell surface proteins. Proteomics. 2008;8(19):4012–24. Epub 2008/09/04.

    Article  CAS  PubMed  Google Scholar 

  161. Parker BL, Palmisano G, Edwards AV, White MY, Engholm-Keller K, Lee A, et al. Quantitative N-linked glycoproteomics of myocardial ischemia and reperfusion injury reveals early remodeling in the extracellular environment. Mol Cell Proteomics. 2011;10(8):M110 006833. Epub 2011/03/29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Didangelos A, Yin X, Mandal K, Saje A, Smith A, Xu Q, et al. Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach. Mol Cell Proteomics. 2011;10(8):M111.008128. Epub 2011/05/20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Sun B, Ma L, Yan X, Lee D, Alexander V, Hohmann LJ, et al. N-glycoproteome of E14.Tg2a mouse embryonic stem cells. PLoS One. 2013;8(2):e55722. Epub 2013/02/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Waas M, Bhattacharya S, Chuppa S, Wu X, Jensen DR, Omasits U, et al. Combine and conquer: surfactants, solvents, and chaotropes for robust mass spectrometry based analyses of membrane proteins. Anal Chem. 2014;86(3):1551–9. Epub 2014/01/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chang YH, Gregorich ZR, Chen AJ, Hwang L, Guner H, Yu D, et al. New mass-spectrometry-compatible degradable surfactant for tissue proteomics. J Proteome Res. 2015;14(3):1587–99. Epub 2015/01/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang X, Miller KW. Dodecyl maltopyranoside enabled purification of active human GABA type A receptors for deep and direct proteomic sequencing. Mol Cell Proteomics. 2015;14(3):724–38. Epub 2014/12/05.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang X. Less is more: membrane protein digestion beyond urea-trypsin solution for next-level proteomics. Mol Cell Proteomics. 2015;14(9):2441–53. Epub 2015/06/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28. Epub 2011/09/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mir AR, Moinuddin. Glycoxidation of histone proteins in autoimmune disorders. Clin Chim Acta. 2015;450:25–30. Epub 2015/08/04.

    Article  CAS  PubMed  Google Scholar 

  170. Leschik J, Caron L, Yang H, Cowan C, Puceat M. A view of bivalent epigenetic marks in two human embryonic stem cell lines reveals a different cardiogenic potential. Stem Cells Dev. 2015;24(3):384–92. Epub 2014/09/10.

    Article  CAS  PubMed  Google Scholar 

  171. Oyama K, El-Nachef D, Zhang Y, Sdek P, MacLellan WR. Epigenetic regulation of cardiac myocyte differentiation. Front Genet. 2014;5:375. Epub 2014/11/20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Yang JY, Wang Q, Wang W, Zeng LF. Histone deacetylases and cardiovascular cell lineage commitment. World J Stem Cells. 2015;7(5):852–8. Epub 2015/07/02.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J, et al. Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev. 2014;2014:641979. Epub 2014/04/03.

    PubMed  PubMed Central  Google Scholar 

  174. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145–56. Epub 2011/05/18.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wu SS, Lin X, Yuan LQ, Liao EY. The role of epigenetics in arterial calcification. BioMed Res Int. 2015;2015:320849. Epub 2015/07/30.

    PubMed  PubMed Central  Google Scholar 

  176. Takemura A, Iijima K, Ota H, Son BK, Ito Y, Ogawa S, et al. Sirtuin 1 retards hyperphosphatemia-induced calcification of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2011;31(9):2054–62. Epub 2011/07/02.

    Article  CAS  PubMed  Google Scholar 

  177. Nikolov M, Fischle W. Systematic analysis of histone modification readout. Mol Biosyst. 2013;9(2):182–94. Epub 2012/12/06.

    Article  CAS  PubMed  Google Scholar 

  178. Arnaudo AM, Garcia BA. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin. 2013;6(1):24. Epub 2013/08/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zheng Y, Tipton JD, Thomas PM, Kelleher NL, Sweet SM. Site-specific human histone H3 methylation stability: fast K4me3 turnover. Proteomics. 2014;14(19):2190–9. Epub 2014/05/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Shah RV, Januzzi Jr JL. ST2: a novel remodeling biomarker in acute and chronic heart failure. Curr Heart Fail Rep. 2010;7(1):9–14. Epub 2010/04/29.

    Article  CAS  PubMed  Google Scholar 

  181. Liddy KA, White MY, Cordwell SJ. Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics. Genome Med. 2013;5(2):20. Epub 2013/03/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Smith LM, Kelleher NL, Consortium for Top Down Proteomics. Proteoform: a single term describing protein complexity. Nat Methods. 2013;10(3):186–7. Epub 2013/02/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Peng Y, Ayaz-Guner S, Yu D, Ge Y. Top-down mass spectrometry of cardiac myofilament proteins in health and disease. Proteomics Clin Appl. 2014;8:554–68. Epub 2014/06/20.

    Article  CAS  PubMed  Google Scholar 

  184. Savaryn JP, Catherman AD, Thomas PM, Abecassis MM, Kelleher NL. The emergence of top-down proteomics in clinical research. Genome Med. 2013;5(6):53. Epub 2013/06/29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhang J, Guy MJ, Norman HS, Chen YC, Xu Q, Dong X, et al. Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J Proteome Res. 2011;10(9):4054–65. Epub 2011/07/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Peng Y, Yu D, Gregorich Z, Chen X, Beyer AM, Gutterman DD, et al. In-depth proteomic analysis of human tropomyosin by top-down mass spectrometry. J Muscle Res Cell Motil. 2013;34(3–4):199–210. Epub 2013/07/25.

    Article  CAS  PubMed  Google Scholar 

  187. Mazur MT, Cardasis HL, Spellman DS, Liaw A, Yates NA, Hendrickson RC. Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. Proc Natl Acad Sci U S A. 2010;107(17):7728–33. Epub 2010/04/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gregorich ZR, Peng Y, Lane NM, Wolff JJ, Wang S, Guo W, et al. Comprehensive assessment of chamber-specific and transmural heterogeneity in myofilament protein phosphorylation by top-down mass spectrometry. J Mol Cell Cardiol. 2015;87:102–12. Epub 2015/08/14.

    Article  CAS  PubMed  Google Scholar 

  189. Fellers RT, Greer JB, Early BP, Yu X, LeDuc RD, Kelleher NL, et al. ProSight Lite: graphical software to analyze top-down mass spectrometry data. Proteomics. 2015;15(7):1235–8. Epub 2015/04/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. LeDuc RD, Taylor GK, Kim YB, Januszyk TE, Bynum LH, Sola JV, et al. ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res. 2004;32(Web Server issue):W340–5. Epub 2004/06/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Guner H, Close PL, Cai W, Zhang H, Peng Y, Gregorich ZR, et al. MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization. J Am Soc Mass Spectrom. 2014;25(3):464–70. Epub 2014/01/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Petrotchenko EV, Borchers CH. HDX match software for the data analysis of top-down ECD-FTMS hydrogen/deuterium exchange experiments. J Am Soc Mass Spectrom. 2015;26:1895–8. Epub 2015/07/15.

    Article  CAS  PubMed  Google Scholar 

  193. Kellie JF, Tran JC, Lee JE, Ahlf DR, Thomas HM, Ntai I, et al. The emerging process of top down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. Mol Biosyst. 2010;6(9):1532–9. Epub 2010/08/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Catherman AD, Skinner OS, Kelleher NL. Top down proteomics: facts and perspectives. Biochem Biophys Res Commun. 2014;445(4):683–93. Epub 2014/02/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Brunner AM, Lossl P, Liu F, Huguet R, Mullen C, Yamashita M, et al. Benchmarking multiple fragmentation methods on an orbitrap fusion for top-down phospho-proteoform characterization. Anal Chem. 2015;87(8):4152–8. Epub 2015/03/25.

    Article  CAS  PubMed  Google Scholar 

  196. Fornelli L, Parra J, Hartmer R, Stoermer C, Lubeck M, Tsybin YO. Top-down analysis of 30-80 kDa proteins by electron transfer dissociation time-of-flight mass spectrometry. Anal Bioanal Chem. 2013;405(26):8505–14. Epub 2013/08/13.

    Article  CAS  PubMed  Google Scholar 

  197. Belov ME, Damoc E, Denisov E, Compton PD, Horning S, Makarov AA, et al. From protein complexes to subunit backbone fragments: a multi-stage approach to native mass spectrometry. Anal Chem. 2013;85(23):11163–73. Epub 2013/11/19.

    Article  CAS  PubMed  Google Scholar 

  198. Walmsley SJ, Rudnick PA, Liang Y, Dong Q, Stein SE, Nesvizhskii AI. Comprehensive analysis of protein digestion using six trypsins reveals the origin of trypsin as a significant source of variability in proteomics. J Proteome Res. 2013;12(12):5666–80. Epub 2013/10/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by American Heart Association 15GRNT24980002 to R.G. and NIH grant R01HL094384 to A.S.O. E.K. is a member of the Medical Scientist Training Program at the Medical College of Wisconsin, which is partially supported by an NIH T32 grant GM080202. S.F. was partially supported by an American College of Cardiology Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah L. Gundry PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Waas, M. et al. (2016). Stem Cell Proteomics. In: Agnetti, G., Lindsey, M., Foster, D. (eds) Manual of Cardiovascular Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-319-31828-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31828-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31826-4

  • Online ISBN: 978-3-319-31828-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics