Skip to main content

Organelle, Protein and Peptide Fractionation in Cardiovascular Proteomics

  • Chapter
  • First Online:
  • 695 Accesses

Abstract

Proteomics experiments are as diverse as the scientists who perform them. Goals range from the desire to understand a subcellular structure or an individual protein in greater depth, to identification of novel protein-protein interactions. Or perhaps, the goal is to obtain a global protein abundance profile from an animal model of cardiovascular disease or from patient biopsies. Regardless of scale or objective, inevitably, the tools of organelle isolation, protein purification or peptide fractionation will play an integral role. In this chapter, we survey both time-honored and state-of-the-art fractionation techniques, with an emphasis on underlying physical and chemical principles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 1995;16:1090–4.

    Article  CAS  PubMed  Google Scholar 

  2. Deutscher MP. Guide to protein purification. Methods Enzymol. vol. 182. Academic: San Diego; 1990. p. 894.

    Google Scholar 

  3. Deutscher MP, Burgess RR. Guide to protein purification. Methods Enzymol. vol. 463. Academic: San Diego; 2009. p. 915.

    Google Scholar 

  4. Linn S. Strategies and considerations for protein purifications. In: Deutscher MP, editors. Methods Enzymol. Academic: San Diego; 1990. p. 9–15.

    Google Scholar 

  5. Deutscher MP. Maintaining protein stability. Methods Enzymol. 1990;182:83–9.

    Article  CAS  PubMed  Google Scholar 

  6. Stoll VS, Blanchard JS. Buffers: principles and practice. In: Deutscher MP, editor. Methods Enzymol. Academic: San Diego; 1990. p. 24–38.

    Google Scholar 

  7. Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76:4193–201.

    Article  CAS  PubMed  Google Scholar 

  8. Buie J. Evolution of the lab centrifuge. Lab Manager. May 7, 2010.

    Google Scholar 

  9. Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O’Rourke B. Mitochondrial ROMK channel is a molecular component of mitoK(ATP). Circ Res. 2012;111:446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, Ghosh SS. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003;21:281–6.

    Article  CAS  PubMed  Google Scholar 

  11. Storrie B, Madden EA. Isolation of subcellular organelles. In: Deutscher MP, editor. Methods Enzymol. Academic: San Diego; 1990. p. 203–25.

    Google Scholar 

  12. Agnetti G, Husberg C, Van Eyk JE. Divide and conquer: the application of organelle proteomics to heart failure. Circ Res. 2011;108:512–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michelsen U, von Hagen J. Isolation of subcellular organelles and structures. Methods Enzymol. 2009;463:305–28.

    Article  CAS  PubMed  Google Scholar 

  14. Englard S, Seifter S. Precipitation techniques. In: Deutscher MP, editor. Methods Enzymol. Academic: San Diego; 1990. p. 285–300.

    Google Scholar 

  15. Hofmeister F. The Original German. II. Arch Exp Pathol Pharmacol. 1888;24: 247–260.

    Google Scholar 

  16. Rockstroh M, Muller SA, Jende C, Kerzhner A, von Bergen M, Tomm JM. Cell fractionation – an important tool for compartment proteomics. J Integr OMICS. 2011;1:135–43.

    Google Scholar 

  17. Arrell DK, Neverova I, Fraser H, Marban E, Van Eyk JE. Proteomic analysis of pharmacologically preconditioned cardiomyocytes reveals novel phosphorylation of myosin light chain 1. Circ Res. 2001;89:480–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kane LA, Neverova I, Van Eyk JE. Subfractionation of heart tissue: the “in sequence” myofilament protein extraction of myocardial tissue. Methods Mol Biol. 2007;357:87–90.

    CAS  PubMed  Google Scholar 

  19. Shechter D, Dormann HL, Allis CD, Hake SB. Extraction, purification and analysis of histones. Nat Protoc. 2007;2:1445–57.

    Article  CAS  PubMed  Google Scholar 

  20. Franklin S, Chen H, Mitchell-Jordan S, Ren S, Wang Y, Vondriska TM. Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth. Mol Cell Proteomics MCP. 2012;11(M111):014258.

    PubMed  Google Scholar 

  21. Monte E, Mouillesseaux K, Chen H, Kimball T, Ren S, Wang Y, Chen JN, Vondriska TM, Franklin S. Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2013;305:H1624–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen H, Monte E, Vondriska TM, Franklin S. Systems proteomics of healthy and diseased chromatin. Methods Mol Biol. 2013;1005:77–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wessel D, Flugge UI. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984;138:141–3.

    Article  CAS  PubMed  Google Scholar 

  24. Ion exchange chromatography and chromatofocusing principles & methods handbook. GE Healthcare. http://www.gelifesciences.com/file_source/GELS/Service%20and%20Support/Documents%20and%20Downloads/Handbooks/pdfs/Ion%20Exchange%20Chromatography.pdf.

  25. Rossomando EF. Ion-exchange chromatography. In: Deutscher MP, editor. Methods Enzymol. Academic: San Diego; 1990. p. 309–17.

    Google Scholar 

  26. Kennedy RM. Hydrophobic chromatography. In: Deutscher MP, editor. Methods Enzymol. Academic: San Diego; 1990. p. 339–43.

    Google Scholar 

  27. Hydrophobic interaction and reversed phase chromatography: principles & methods. GE Healthcare. https://webcache.googleusercontent.com/search?q=cache:125NuYEM0i4J:https://proteins.gelifesciences.com/~/media/protein-purification-ib/documents/selection-guide-pdfs/hydrophobic_interaction_chromatographyhic.pdf%3Fla%3Den+&cd=3&hl=en&ct=clnk&gl=us.

  28. Gopalakrishna R, Anderson WB. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982;104:830–6.

    Article  CAS  PubMed  Google Scholar 

  29. Mani RS, Kay CM. Purification and characterization of a novel 12,000-Da calcium binding protein from smooth muscle. Arch Biochem Biophys. 1992;296:442–9.

    Article  CAS  PubMed  Google Scholar 

  30. Stellwagen E. Gel filtration. In: Deutscher MP, editor. Methods Enzymol. Academic: San Diego; 1990. p. 317–28

    Google Scholar 

  31. Gel filtration: principles & methods. Protein Sample Preparation. http://www.gelifesciences.com/file_source/GELS/Service%20and%20Support/Documents%20and%20Downloads/Handbooks/Protein_sample_preparation_handbook.pdf.

  32. Affinity chromatography: principles & methods. GE Healthcare. http://www.gelifesciences.com/file_source/GELS/Service%20and%20Support/Documents%20and%20Downloads/Handbooks/Affinity_chromatography_handbook.pdf.

  33. Ostrove S. Affinity chromatography: general methods. In: Deutscher MP, editor. Methods Enzymol. Academic: San Diego; 1990. p. 357–71.

    Google Scholar 

  34. Porath J. Immobilized metal ion affinity chromatography. Protein Expr Purif. 1992;3:263–81.

    Article  CAS  PubMed  Google Scholar 

  35. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 1999;17:1030–2.

    Article  CAS  PubMed  Google Scholar 

  36. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods (San Diego Calif). 2001;24:218–29.

    Article  CAS  Google Scholar 

  37. Li Y. Commonly used tag combinations for tandem affinity purification. Biotechnol Appl Biochem. 2010;55:73–83.

    Article  CAS  PubMed  Google Scholar 

  38. Xu X, Song Y, Li Y, Chang J, Zhang H, An L. The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. Protein Expr Purif. 2010;72:149–56.

    Article  CAS  PubMed  Google Scholar 

  39. Martin AJP, Synge RLM. A new form of chromatogram employing two liquid phases. Biochem J. 1941;35:1358–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo DC, Mant CT, Hodges RS. Effects of ion-pairing reagents on the prediction of peptide retention in reversed-phase high-performance liquid chromatography. J Chromatogr. 1987;386:205–22.

    Article  CAS  PubMed  Google Scholar 

  41. Mallet CR, Lu Z, Mazzeo JR. A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts. Rapid Commun Mass Spectrom RCM. 2004;18:49–58.

    Article  CAS  PubMed  Google Scholar 

  42. Wolters DA, Washburn MP, Yates 3rd JR. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001;73:5683–90.

    Article  CAS  PubMed  Google Scholar 

  43. Giddings JC. Concepts and comparisons in multidimensional separation. J High Resolut Chromatogr. 1987;10:319–23.

    Article  CAS  Google Scholar 

  44. Boersema PJ, Mohammed S, Heck AJ. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Anal Bioanal Chem. 2008;391:151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem. 2005;77:6426–34.

    Article  CAS  PubMed  Google Scholar 

  46. Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci. 2005;28:1694–703.

    Article  CAS  PubMed  Google Scholar 

  47. Wyndham KD, O’Gara JE, Walter TH, Glose KH, Lawrence NL, Alden BA, Izzo GS, Hudalla CJ, Iraneta PC. Characterization and evaluation of C18 HPLC stationary phases based on ethyl-bridged hybrid organic/inorganic particles. Anal Chem. 2003;75:6781–8.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Yang F, Gritsenko MA, Wang Y, Clauss T, Liu T, Shen Y, Monroe ME, Lopez-Ferrer D, Reno T, Moore RJ, Klemke RL, Camp 2nd DG, Smith RD. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11:2019–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang F, Shen Y, Camp 2nd DG, Smith RD. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics. 2012;9:129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hanson BJ, Schulenberg B, Patton WF, Capaldi RA. A novel subfractionation approach for mitochondrial proteins: a three-dimensional mitochondrial proteome map. Electrophoresis. 2001;22:950–9.

    Article  CAS  PubMed  Google Scholar 

  51. Tiselius A. Electrophoresis of serumglobulin I. Biochem J. 1937;31:313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smithies O. How it all began: a personal history of gel electrophoresis. Methods Mol Biol. 2012;869:1–21.

    Article  CAS  PubMed  Google Scholar 

  53. Smithies O. Early days of gel electrophoresis. Genetics. 1995;139:1–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kunkel HG, Tiselius A. Electrophoresis of proteins on filter paper. J Gen Physiol. 1951;35:89–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kunkel HG, Slater RJ. Zone electrophoresis in a starch supporting medium. Proc Soc Exp Biol Med Soc Exp Biol Med (New York NY). 1952;80:42–4.

    Article  CAS  Google Scholar 

  56. Smithies O. Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem J. 1955;61:629–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raymond S, Weintraub L. Acrylamide gel as a supporting medium for zone electrophoresis. Science. 1959;130:711.

    Article  CAS  PubMed  Google Scholar 

  58. Devillez EJ. Preparative acrylamide electrophoresis with the conventional vertical starch gel apparatus. Anal Biochem. 1964;9:485–6.

    Article  CAS  PubMed  Google Scholar 

  59. Pederson T. Turning a PAGE: the overnight sensation of SDS-polyacrylamide gel electrophoresis. FASEB J. 2008;22:949–53.

    Article  CAS  PubMed  Google Scholar 

  60. Shapiro AL, Vinuela E, Maizel Jr JV. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967;28:815–20.

    Article  CAS  PubMed  Google Scholar 

  61. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  CAS  PubMed  Google Scholar 

  62. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.

    PubMed  PubMed Central  Google Scholar 

  63. Gelfi C, Righetti PG. Preparative isoelectric focusing in immobilized pH gradients. II. A case report. J Biochem Biophys Methods. 1983;8:157–72.

    Article  CAS  PubMed  Google Scholar 

  64. Gianazza E, Dossi G, Celentano F, Righetti PG. Isoelectric focusing in immobilized pH gradients: generation and optimization of wide pH intervals with two-chamber mixers. J Biochem Biophys Methods. 1983;8:109–33.

    Article  CAS  PubMed  Google Scholar 

  65. Westermeier R, Postel W, Weser J, Gorg A. High-resolution two-dimensional electrophoresis with isoelectric focusing in immobilized pH gradients. J Biochem Biophys Methods. 1983;8:321–30.

    Article  CAS  PubMed  Google Scholar 

  66. Schägger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991;199:223–31.

    Article  PubMed  Google Scholar 

  67. Markham RL. A modified method of two-dimensional zone electrophoresis applied to mucoproteins in serum and urine. Nature. 1956;177:125–6.

    Article  CAS  PubMed  Google Scholar 

  68. Smithies O, Poulik MD. Two-dimensional electrophoresis of serum proteins. Nature. 1956;177:1033.

    Article  CAS  PubMed  Google Scholar 

  69. Poulik MD, Smithies O. Comparison and combination of the starch-gel and filter-paper electrophoretic methods applied to human sera: two-dimensional electrophoresis. Biochem J. 1958;68:636–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bjellqvist B, Ek K, Righetti PG, Gianazza E, Gorg A, Westermeier R, Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods. 1982;6:317–39.

    Article  CAS  PubMed  Google Scholar 

  71. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000;21:1037–53.

    Article  CAS  PubMed  Google Scholar 

  72. Rabilloud T, Chevallet M, Luche S, Lelong C. Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics. 2010;73:2064–77.

    Article  CAS  PubMed  Google Scholar 

  73. Weiss W, Gorg A. High-resolution two-dimensional electrophoresis. Methods Mol Biol. 2009;564:13–32.

    Article  CAS  PubMed  Google Scholar 

  74. Heinke MY, Wheeler CH, Chang D, Einstein R, Drake-Holland A, Dunn MJ, dos Remedios CG. Protein changes observed in pacing-induced heart failure using two-dimensional electrophoresis. Electrophoresis. 1998;19:2021–30.

    Article  CAS  PubMed  Google Scholar 

  75. Weekes J, Wheeler CH, Yan JX, Weil J, Eschenhagen T, Scholtysik G, Dunn MJ. Bovine dilated cardiomyopathy: proteomic analysis of an animal model of human dilated cardiomyopathy. Electrophoresis. 1999;20:898–906.

    Article  CAS  PubMed  Google Scholar 

  76. Jiang L, Tsubakihara M, Heinke MY, Yao M, Dunn MJ, Phillips W, dos Remedios CG, Nosworthy NJ. Heart failure and apoptosis: electrophoretic methods support data from micro- and macro-arrays. A critical review of genomics and proteomics. Proteomics. 2001;1:1481–8.

    Article  CAS  PubMed  Google Scholar 

  77. Arrell DK, Elliott ST, Kane LA, Guo Y, Ko YH, Pedersen PL, Robinson J, Murata M, Murphy AM, Marban E, Van Eyk JE. Proteomic analysis of pharmacological preconditioning: novel protein targets converge to mitochondrial metabolism pathways. Circ Res. 2006;99:706–14.

    Article  CAS  PubMed  Google Scholar 

  78. Wang SB, Foster DB, Rucker J, O’Rourke B, Kass DA, Van Eyk JE. Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy. Circ Res. 2011;109:750–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brown JR, Kauffman DL, Hartley BS. The primary structure of porcine pancreatic elastase. The N-terminus and disulphide bridges. Biochem J. 1967;103:497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brennan JP, Wait R, Begum S, Bell JR, Dunn MJ, Eaton P. Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J Biol Chem. 2004;279:41352–60.

    Article  CAS  PubMed  Google Scholar 

  81. Meyer B, Wittig I, Trifilieff E, Karas M, Schagger H. Identification of two proteins associated with mammalian ATP synthase. Mol Cell Proteomics MCP. 2007;6:1690–9.

    Article  CAS  PubMed  Google Scholar 

  82. Satori CP, Kostal V, Arriaga EA. Review on recent advances in the analysis of isolated organelles. Anal Chim Acta. 2012;753:8–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zischka H, Braun RJ, Marantidis EP, Büringer D, Bornhövd C, Hauck SM, Demmer O, Gloeckner CJ, Reichert AS, Madeo F, Ueffing M. Differential analysis of Saccharomyces cerevisiae mitochondria by free flow electrophoresis. Mol Cell Proteomics. 2006;5:2185–200.

    Article  CAS  PubMed  Google Scholar 

  84. Islinger M, Li KW, Loos M, Liebler S, Angermüller S, Eckerskorn C, Weber G, Abdolzade A, Völkl A. Peroxisomes from the heavy mitochondrial fraction: isolation by zonal free flow electrophoresis and quantitative mass spectrometrical characterization. J Proteome Res. 2010;9:113–24.

    Article  CAS  PubMed  Google Scholar 

  85. Sun L, Zhu G, Yan X, Champion MM, Dovichi NJ. Capillary zone electrophoresis for analysis of complex proteomes using an electrokinetically pumped sheath flow nanospray interface. Proteomics. 2014;14:622–8.

    Article  CAS  PubMed  Google Scholar 

  86. Fonslow BR, Yates 3rd JR. Capillary electrophoresis applied to proteomic analysis. J Sep Sci. 2009;32:1175–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Issaq HJ, Janini GM, Chan KC, Veenstra TD. Sheathless electrospray ionization interfaces for capillary electrophoresis-mass spectrometric detection advantages and limitations. J Chromatogr A. 2004;1053:37–42.

    CAS  PubMed  Google Scholar 

  88. Sun L, Zhu G, Yan X, Zhang Z, Wojcik R, Champion MM, Dovichi NJ. Capillary zone electrophoresis for bottom-up analysis of complex proteomes. Proteomics. 2016;16(2):188–96.

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Fonslow BR, Wong CC, Nakorchevsky A, Yates 3rd JR. Improving the comprehensiveness and sensitivity of sheathless capillary electrophoresis-tandem mass spectrometry for proteomic analysis. Anal Chem. 2012;84:8505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li Y, Compton PD, Tran JC, Ntai I, Kelleher NL. Optimizing capillary electrophoresis for top-down proteomics of 30-80 kDa proteins. Proteomics. 2014;14:1158–64.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Macri J, McGee B, Thomas JN, Du P, Stevenson TI, Kilby GW, Rapundalo ST. Cardiac sarcoplasmic reticulum and sarcolemmal proteins separated by two-dimensional electrophoresis: surfactant effects on membrane solubilization. Electrophoresis. 2000;21:1685–93.

    Article  CAS  PubMed  Google Scholar 

  92. Yin X, Cuello F, Mayr U, Hao Z, Hornshaw M, Ehler E, Avkiran M, Mayr M. Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution. Mol Cell Proteomics MCP. 2010;9:497–509.

    Article  CAS  PubMed  Google Scholar 

  93. Franklin S, Zhang MJ, Chen H, Paulsson AK, Mitchell-Jordan SA, Li Y, Ping P, Vondriska TM. Specialized compartments of cardiac nuclei exhibit distinct proteomic anatomy. Mol Cell Proteomics MCP. 2011;10(M110):000703.

    PubMed  Google Scholar 

  94. Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta. 2013;1832:2414–24.

    Article  CAS  PubMed  Google Scholar 

  95. Karbassi E, Vondriska TM. How the proteome packages the genome for cardiovascular development. Proteomics. 2014;14:2115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rosa-Garrido M, Karbassi E, Monte E, Vondriska TM. Regulation of chromatin structure in the cardiovascular system. Circ J Off J Jpn Circ Soc. 2013;77:1389–98.

    CAS  Google Scholar 

  97. Foster DB, Liu T, Rucker J, O’Meally RN, Devine LR, Cole RN, O’Rourke B. The cardiac acetyl-lysine proteome. PLoS One. 2013;8:e67513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Donoghue PM, Hughes C, Vissers JP, Langridge JI, Dunn MJ. Nonionic detergent phase extraction for the proteomic analysis of heart membrane proteins using label-free LC-MS. Proteomics. 2008;8:3895–905.

    Article  CAS  PubMed  Google Scholar 

  99. Banfi C, Brioschi M, Wait R, Begum S, Gianazza E, Fratto P, Polvani G, Vitali E, Parolari A, Mussoni L, Tremoli E. Proteomic analysis of membrane microdomains derived from both failing and non-failing human hearts. Proteomics. 2006;6:1976–88.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang J, Liem DA, Mueller M, Wang Y, Zong C, Deng N, Vondriska TM, Korge P, Drews O, Maclellan WR, Honda H, Weiss JN, Apweiler R, Ping P. Altered proteome biology of cardiac mitochondria under stress conditions. J Proteome Res. 2008;7:2204–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang J, Li X, Mueller M, Wang Y, Zong C, Deng N, Vondriska TM, Liem DA, Yang JI, Korge P, Honda H, Weiss JN, Apweiler R, Ping P. Systematic characterization of the murine mitochondrial proteome using functionally validated cardiac mitochondria. Proteomics. 2008;8:1564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332:687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Online Resources

  • www.chromacademy.com: an online e-learning resource for analytical scientists, centered on chromatography, which includes instructional video.

  • http://chemwiki.ucdavis.edu/: a chemistry-centered resource with core modules covering analytical, biological, theoretical, inorganic, organic and physical chemistry. The topics covered in the chapter as well as an overview of mass spectrometry can be found in the analytical chemistry module under “Instrumental Analysis”.

Download references

Funding

MRM was supported by an NIH T32 grant, 5T32HL007576-30. SF was supported by an NIH/NHLBI R01 HL130424 and the Nora Eccles Treadwell Foundation. DBF was supported by an American Heart Association National Scientist Development Grant 12SDG12060056, NIH/NHLBI R21HL108052 and the Zegar Family Foundation

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah Franklin PhD or D. Brian Foster PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miller, M.R., Franklin, S., Foster, D.B. (2016). Organelle, Protein and Peptide Fractionation in Cardiovascular Proteomics. In: Agnetti, G., Lindsey, M., Foster, D. (eds) Manual of Cardiovascular Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-319-31828-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31828-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31826-4

  • Online ISBN: 978-3-319-31828-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics