Skip to main content

Clinical Cardiovascular Proteomics

  • Chapter
  • First Online:
Manual of Cardiovascular Proteomics

Abstract

Proteomics has the potential to be translated from a research environment to clinical practice. In the first instance the discovery of novel disease pathways and definition of druggable targets are promises of clinical proteomics. In parallel, clinical proteomics will define new protein-based biomarkers for molecular definition of disease, diagnosis of disease and prediction of events. In cardiovascular medicine the potential applications are manifold and examples are already available for conditions throughout the cardiovascular continuum from early risk factors to intermediate traits and advanced disease, all of which have been subject to proteomic studies. Despite the recent progress most of the available data do not fulfil criteria for novel biomarkers for cardiovascular diseases that are clinically applicable. Studies have been small, findings have not been reproduced in independent cohorts, plausible links to pathophysiology are not always present and sophisticated technical and bioinformatic requirements in proteomics pose challenges to translation of research findings to clinical cardiovascular medicine. Better standardisation of experiments, coordinated research efforts and close collaboration between clinicians and basic sciences will help to ask the right questions and provide the right answers and solutions in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller-Nordhorn J, Binting S, Roll S, Willich SN. An update on regional variation in cardiovascular mortality within Europe. Eur Heart J. 2008;29(10):1316–26.

    Article  PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler III ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  3. Abegunde DO, Mathers CD, Adam T, Ortegon M, Strong K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet. 2007;370(9603):1929–38.

    Article  PubMed  Google Scholar 

  4. Hense HW, Schulte H, Lowel H, Assmann G, Keil U. Framingham risk function overestimates risk of coronary heart disease in men and women from Germany–results from the MONICA Augsburg and the PROCAM cohorts. Eur Heart J. 2003;24(10):937–45.

    Article  PubMed  Google Scholar 

  5. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De BG, De BD, Ducimetiere P, Jousilahti P, Keil U, Njolstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham IM. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003.

    Article  CAS  PubMed  Google Scholar 

  6. Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010;121(15):1768–77.

    Article  PubMed  Google Scholar 

  7. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Article  Google Scholar 

  8. Zimmerli LU, Schiffer E, Zurbig P, Good DM, Kellmann M, Mouls L, Pitt AR, Coon JJ, Schmieder RE, Peter KH, Mischak H, Kolch W, Delles C, Dominiczak AF. Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics. 2008;7(2):290–8.

    Article  CAS  PubMed  Google Scholar 

  9. Delles C, Schiffer E, von zur Muhlen C, Peter K, Rossing P, Parving H, Dymott J, Neisius U, Zimmerli L, Snell-Bergeon J, Maahs D, Schmeider R, Mischak H, Dominiczak A. Urinary proteomic diagnosis of coronary artery disease: identification and clinical validation in 623 individuals. J Hypertens. 2010;28(11):2316–22.

    Article  CAS  PubMed  Google Scholar 

  10. Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, Gonzalez A, Colan SD, Seidman JG, Diez J, Seidman CE. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363(6):552–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Skeik N, Patel DC. A review of troponins in ischemic heart disease and other conditions. Int J Angiol. 2007;16(2):53–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Omland T, de Lemos JA, Sabatine MS, Christophi CA, Rice MM, Jablonski KA, Tjora S, Domanski MJ, Gersh BJ, Rouleau JL, Pfeffer MA, Braunwald E. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361(26):2538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaptoge S, Di AE, Pennells L, Wood AM, White IR, Gao P, Walker M, Thompson A, Sarwar N, Caslake M, Butterworth AS, Amouyel P, Assmann G, Bakker SJ, Barr EL, Barrett-Connor E, Benjamin EJ, Bjorkelund C, Brenner H, Brunner E, Clarke R, Cooper JA, Cremer P, Cushman M, Dagenais GR, D’Agostino Sr RB, Dankner R, Davey-Smith G, Deeg D, Dekker JM, Engstrom G, Folsom AR, Fowkes FG, Gallacher J, Gaziano JM, Giampaoli S, Gillum RF, Hofman A, Howard BV, Ingelsson E, Iso H, Jorgensen T, Kiechl S, Kitamura A, Kiyohara Y, Koenig W, Kromhout D, Kuller LH, Lawlor DA, Meade TW, Nissinen A, Nordestgaard BG, Onat A, Panagiotakos DB, Psaty BM, Rodriguez B, Rosengren A, Salomaa V, Kauhanen J, Salonen JT, Shaffer JA, Shea S, Ford I, Stehouwer CD, Strandberg TE, Tipping RW, Tosetto A, Wassertheil-Smoller S, Wennberg P, Westendorp RG, Whincup PH, Wilhelmsen L, Woodward M, Lowe GD, Wareham NJ, Khaw KT, Sattar N, Packard CJ, Gudnason V, Ridker PM, Pepys MB, Thompson SG, Danesh J. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367(14):1310–20.

    Article  PubMed  Google Scholar 

  14. Apple FS, Henry TD, Berger CR, Landt YA. Early monitoring of serum cardiac troponin I for assessment of coronary reperfusion following thrombolytic therapy. Am J Clin Pathol. 1996;105(1):6–10.

    Article  CAS  PubMed  Google Scholar 

  15. Sherwood MW, Kristin NL. High-sensitivity troponin assays: evidence, indications, and reasonable use. J Am Heart Assoc. 2014;3(1):e000403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Januzzi JL, Troughton R. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation. 2013;127(4):500–7.

    Article  PubMed  Google Scholar 

  17. Desai AS. Are serial BNP measurements useful in heart failure management? Serial natriuretic peptide measurements are not useful in heart failure management: the art of medicine remains long. Circulation. 2013;127(4):509–16.

    Article  PubMed  Google Scholar 

  18. Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov. 2003;2(7):566–80.

    Article  CAS  PubMed  Google Scholar 

  19. Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MS, Go AS, Harrell Jr FE, Hong Y, Howard BV, Howard VJ, Hsue PY, Kramer CM, McConnell JP, Normand SL, O’Donnell CJ, Smith Jr SC, Wilson PW. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119(17):2408–16.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang TJ. Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation. 2011;123(5):551–65.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y). 1996;14(1):61–5.

    Article  CAS  Google Scholar 

  22. Mischak H, Ioannidis JP, Argiles A, Attwood TK, Bongcam-Rudloff E, Broenstrup M, Charonis A, Chrousos GP, Delles C, Dominiczak A, Dylag T, Ehrich J, Egido J, Findeisen P, Jankowski J, Johnson RW, Julien BA, Lankisch T, Leung HY, Maahs D, Magni F, Manns MP, Manolis E, Mayer G, Navis G, Novak J, Ortiz A, Persson F, Peter K, Riese HH, Rossing P, Sattar N, Spasovski G, Thongboonkerd V, Vanholder R, Schanstra JP, Vlahou A. Implementation of proteomic biomarkers: making it work. Eur J Clin Invest. 2012;42(9):1027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yassine H, Borges CR, Schaab MR, Billheimer D, Stump C, Reaven P, Lau SS, Nelson R. Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes. Proteomics Clin Appl. 2013;7(7–8):528–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindsey ML, Mayr M, Gomes AV, Delles C, Arrell DK, Murphy AM, Lange RA, Costello CE, Jin YF, Laskowitz DT, Sam F, Terzic A, Van EJ, Srinivas PR. Transformative impact of proteomics on cardiovascular health and disease: a scientific statement from the American Heart Association. Circulation. 2015;132(9):852–72.

    Article  CAS  PubMed  Google Scholar 

  25. Jacobs JM, Adkins JN, Qian WJ, Liu T, Shen Y, Camp DG, Smith RD. Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res. 2005;4(4):1073–85.

    Article  CAS  PubMed  Google Scholar 

  26. Good DM, Thongboonkerd V, Novak J, Bascands JL, Schanstra JP, Coon JJ, Dominiczak A, Mischak H. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J Proteome Res. 2007;6(12):4549–55.

    Article  CAS  PubMed  Google Scholar 

  27. Fach EM, Garulacan LA, Gao J, Xiao Q, Storm SM, Dubaquie YP, Hefta SA, Opiteck GJ. In vitro biomarker discovery for atherosclerosis by proteomics. Mol Cell Proteomics. 2004;3(12):1200–10.

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez-Cabrero J, Pozo M, Duran MC, de Nicolás R, Egido J, Vivanco F. The proteome of endothelial cells. Methods Mol Biol. 2007;357:181–98.

    CAS  PubMed  Google Scholar 

  29. Boccardi C, Cecchettini A, Caselli A, Camici G, Evangelista M, Mercatanti A, Rainaldi G, Citti L. A proteomic approach to the investigation of early events involved in vascular smooth muscle cell activation. Cell Tissue Res. 2007;328(1):185–95.

    Article  CAS  PubMed  Google Scholar 

  30. Duran MC, Mas S, Martin-Ventura JL, Meilhac O, Michel JB, Gallego-Delgado J, Lazaro A, Tunon J, Egido J, Vivanco F. Proteomic analysis of human vessels: application to atherosclerotic plaques. Proteomics. 2003;3(6):973–8.

    Article  CAS  PubMed  Google Scholar 

  31. de la Cuesta F, Barderas MG, Calvo E, Zubiri I, Maroto AS, Darde VM, Martin-Rojas T, Gil-Dones F, Posada-Ayala M, Tejerina T, Lopez JA, Vivanco F, Alvarez-Llamas G. Secretome analysis of atherosclerotic and non-atherosclerotic arteries reveals dynamic extracellular remodeling during pathogenesis. J Proteomics. 2012;75(10):2960–71.

    Article  PubMed  CAS  Google Scholar 

  32. Martin-Ventura JL, Duran MC, Blanco-Colio LM, Meilhac O, Leclercq A, Michel JB, Jensen ON, Hernandez-Merida S, Tunon J, Vivanco F, Egido J. Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation. 2004;110(15):2216–9.

    Article  CAS  PubMed  Google Scholar 

  33. Lepedda AJ, Cigliano A, Cherchi GM, Spirito R, Maggioni M, Carta F, Turrini F, Edelstein C, Scanu AM, Formato M. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis. 2009;203(1):112–8.

    Article  CAS  PubMed  Google Scholar 

  34. Donners MM, Verluyten MJ, Bouwman FG, Mariman EC, Devreese B, Vanrobaeys F, van Beeumen J, van den Akker LH, Daemen MJ, Heeneman S. Proteomic analysis of differential protein expression in human atherosclerotic plaque progression. J Pathol. 2005;206(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  35. Kardys I, Rifai N, Meilhac O, Michel JB, Martin-Ventura JL, Buring JE, Libby P, Ridker PM. Plasma concentration of heat shock protein 27 and risk of cardiovascular disease: a prospective, nested case-control study. Clin Chem. 2008;54(1):139–46.

    Article  CAS  PubMed  Google Scholar 

  36. de Kleijn DP, Moll FL, Hellings WE, Ozsarlak-Sozer G, de Bruin P, Doevendans PA, Vink A, Catanzariti LM, Schoneveld AH, Algra A, Daemen MJ, Biessen EA, de Jager W, Zhang H, de Vries JP, Falk E, Lim SK, van der Spek PJ, Sze SK, Pasterkamp G. Local atherosclerotic plaques are a source of prognostic biomarkers for adverse cardiovascular events. Arterioscler Thromb Vasc Biol. 2010;30(3):612–9.

    Article  PubMed  CAS  Google Scholar 

  37. Peeters W, de Kleijn DP, Vink A, van de Weg S, Schoneveld AH, Sze SK, van der Spek PJ, de Vries JP, Moll FL, Pasterkamp G. Adipocyte fatty acid binding protein in atherosclerotic plaques is associated with local vulnerability and is predictive for the occurrence of adverse cardiovascular events. Eur Heart J. 2011;32(14):1758–68.

    Article  CAS  PubMed  Google Scholar 

  38. Furuhashi M, Tuncman G, Gorgun CZ, Makowski L, Atsumi G, Vaillancourt E, Kono K, Babaev VR, Fazio S, Linton MF, Sulsky R, Robl JA, Parker RA, Hotamisligil GS. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature. 2007;447(7147):959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delles C, Neisius U, Carty D. Proteomics in hypertension and other cardiovascular diseases. Ann Med. 2012;44 Suppl 1:S55–64.

    Article  CAS  PubMed  Google Scholar 

  40. Padmanabhan S, Delles C, Dominiczak A. Genetic factors in hypertension. Arch Med Sci. 2009;5(2A):S212–9.

    Google Scholar 

  41. Staessen J, Wang J, Bianchi G, Birkenhager W. Essential hypertension. Lancet. 2003;361:1629–41.

    Article  PubMed  Google Scholar 

  42. Grussenmeyer T, Meili-Butz S, Roth V, Dieterle T, Brink M, Winkler B, Matt P, Carrel TP, Eckstein FS, Lefkovits I, Grapow MT. Proteome analysis in cardiovascular pathophysiology using Dahl rat model. J Proteomics. 2011;74(5):672–82.

    Article  CAS  PubMed  Google Scholar 

  43. Jin X, Xia L, Wang L, Shi J, Zheng Y, Chen W, Zhang L, Liu Z, Chen G, Fang N. Differential protein expression in hypertrophic heart with and without hypertension in spontaneously hypertensive rats. Proteomics. 2006;6:1948–56.

    Article  CAS  PubMed  Google Scholar 

  44. Lindsey M, Goshorn D, Comte-Walters S, Hendrick J, Hapke E, Zile M, Schey K. A multidimensional proteomic approach to identify hypertrophy associated proteins. Proteomics. 2006;6:2225–35.

    Article  CAS  PubMed  Google Scholar 

  45. Gallego-Delgado J, Lazaro A, Osende J, Esteban V, Barderas M, Gomez-Guerrero C, Vega R, Vivanco F, Egido J. Proteomic analysis of early left ventricular hypertrophy secondary to hypertension: Modulation by antihypertensive therapies. J Am Soc Nephrol. 2006;17:S159–64.

    Article  CAS  PubMed  Google Scholar 

  46. Liu L, Wang W, Meng X, Gao J, Wu H, Wang P, Wu W, Wang L, Ma L, Zhang W. Left ventricular hypertrophy induced by abdominal aortic banding and its prevention by angiotensin receptor blocker Telmisartan – a proteomic analysis. J Physiol Biochem. 2010;66:329–38.

    Article  CAS  PubMed  Google Scholar 

  47. Scognamiglio R, Negut C, Ramondo A, Tiengo A, Avogaro A. Detection of coronary artery disease in asymptomatic patients with type 2 diabetes mellitus. J Am Coll Cardiol. 2006;47(1):65–71.

    Article  PubMed  Google Scholar 

  48. Donahue MP, Rose K, Hochstrasser D, Vonderscher J, Grass P, Chibout SD, Nelson CL, Sinnaeve P, Goldschmidt-Clermont PJ, Granger CB. Discovery of proteins related to coronary artery disease using industrial-scale proteomics analysis of pooled plasma. Am Heart J. 2006;152(3):478–85.

    Article  CAS  PubMed  Google Scholar 

  49. Laine P, Pentikainen MO, Wurzner R, Penttila A, Paavonen T, Meri S, Kovanen PT. Evidence for complement activation in ruptured coronary plaques in acute myocardial infarction. Am J Cardiol. 2002;90(4):404–8.

    Article  CAS  PubMed  Google Scholar 

  50. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest. 1998;102(3):576–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Darde VM, de la Cuesta F, Dones F, Alvarez-Llamas G, Barderas MG, Vivanco F. Analysis of the plasma proteome associated with acute coronary syndrome: does a permanent protein signature exist in the plasma of ACS patients? J Proteome Res. 2010;9:4420–32.

    Article  CAS  PubMed  Google Scholar 

  52. von zur Muhlen C, Schiffer E, Zurbig P, Kellman M, Brasse M, Meert N, Vanholder R, Dominiczak A, Chen Y, Mischak H, Bode C, Peter K. Evaluation of urine proteome pattern analysis for its potential to reflect coronary artery atherosclerosis in symptomatic patients. J Proteome Res. 2009;8:335–45.

    Article  CAS  Google Scholar 

  53. Oparil S. The ASCOT blood pressure lowering trial. Curr Hypertens Rep. 2006;8(3):229–31.

    Article  PubMed  Google Scholar 

  54. Brown C, McCarthy N, Hughes A, Sever P, Stalmach A, Mullen W, Dominiczak A, Sattar N, Mischak H, Thom S, Mayet J, Stanton A, Delles C. Urinary proteomic biomarkers to predict cardiovascular events. Proteomics Clin Appl. 2015;9:610–7.

    Article  CAS  PubMed  Google Scholar 

  55. Westbrook JA, Wheeler JX, Wait R, Welson SY, Dunn MJ. The human heart proteome: Two-dimensional maps using narrow-range immobilised pH gradients. Electrophoresis. 2006;27(8):1547–55.

    Article  CAS  PubMed  Google Scholar 

  56. Wei YJ, Huang YX, Shen Y, Cui CJ, Zhang XL, Zhang H, Hu SS. Proteomic analysis reveals significant elevation of heat shock protein 70 in patients with chronic heart failure due to arrhythmogenic right ventricular cardiomyopathy. Mol Cell Biochem. 2009;332(1–2):103–11.

    Article  CAS  PubMed  Google Scholar 

  57. Pinet F, Beseme O, Cieniewski-Bernard C, Drobecq H, Jourdain S, Lamblin N, Amouyel P, Bauters C. Predicting left ventricular remodeling after a first myocardial infarction by plasma proteome analysis. Proteomics. 2008;8:1798–808.

    Article  CAS  PubMed  Google Scholar 

  58. Fertin M, Beseme O, Duban S, Amouyel P, Bauters C, Pinet F. Deep plasma proteomic analysis of patients with left ventricular remodeling after a first myocardial infarction. Proteomics Clin Appl. 2010;4:654–73.

    Article  CAS  PubMed  Google Scholar 

  59. St John Sutton M, Sharpe N. Left ventricular remodeling after myocardial infarction. Pathophysiology and therapy. Circulation. 2000;101:2981–8.

    Article  Google Scholar 

  60. Righetti P, Boschetti E, Lomas L, Citterio A. Protein equalizer technology: the quest for a “democratic proteome”. Proteomics. 2006;6:3980–92.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou M, Lucas DA, Chan KC, Issaq HJ, Petricoin III EF, Liotta LA, Veenstra TD, Conrads TP. An investigation into the human serum “interactome”. Electrophoresis. 2004;25(9):1289–98.

    Article  CAS  PubMed  Google Scholar 

  62. Guerrier L, Thulasiraman V, Castagna A, Fortis F, Lin S, Lomas L, Righetti PG, Boschetti E. Reducing protein concentration range of biological samples using solid-phase ligand libraries. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;833(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  63. Kuznetsova T, Herbots L, Lopez B, Jin Y, Richart T, Thijs L, Gonzalez A, Herregods M, Fagard R, Diez J, Staessen J. Prevalence of left ventricular diastolic dysfunction in a general population. Circ Heart Fail. 2009;2:105–12.

    Article  PubMed  Google Scholar 

  64. Kuznetsova T, Mischak H, Mullen W, Staessen J. Urinary proteome analysis in hypertensive patients with left ventricular diastolic dysfunction. Eur Heart J. 2012;33:2342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Burlew B, Weber K. Cardiac fibrosis as a cause of diastolic dysfunction. Herz. 2002;27:92–8.

    Article  PubMed  Google Scholar 

  66. McGregor E, Dunn MJ. Proteomics of the heart: unraveling disease. Circ Res. 2006;98(3):309–21.

    Article  CAS  PubMed  Google Scholar 

  67. Birks EJ, Owen VJ, Burton PB, Bishop AE, Banner NR, Khaghani A, Polak JM, Yacoub MH. Tumor necrosis factor-alpha is expressed in donor heart and predicts right ventricular failure after human heart transplantation. Circulation. 2000;102(3):326–31.

    Article  CAS  PubMed  Google Scholar 

  68. Matt P, Carrel T, White M, Lefkovits I, Van EJ. Proteomics in cardiovascular surgery. J Thorac Cardiovasc Surg. 2007;133(1):210–4.

    Article  CAS  PubMed  Google Scholar 

  69. Zerkowski HR, Grussenmeyer T, Matt P, Grapow M, Engelhardt S, Lefkovits I. Proteomics strategies in cardiovascular research. J Proteome Res. 2004;3(2):200–8.

    Article  CAS  PubMed  Google Scholar 

  70. Oda T, Matsumoto KI. Proteomic analysis in cardiovascular research. Surg Today. 2016;46(3):285–96.

    Article  CAS  PubMed  Google Scholar 

  71. Black KM, Masuzawa A, Hagberg RC, Khabbaz KR, Trovato ME, Rettagliati VM, Bhasin MK, Dillon ST, Libermann TA, Toumpoulis IK, Levitsky S, McCully JD. Preliminary biomarkers for identification of human ascending thoracic aortic aneurysm. J Am Heart Assoc. 2013;2(6):e000138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Feezor RJ, Baker HV, Xiao W, Lee WA, Huber TS, Mindrinos M, Kim RA, Ruiz-Taylor L, Moldawer LL, Davis RW, Seeger JM. Genomic and proteomic determinants of outcome in patients undergoing thoracoabdominal aortic aneurysm repair. J Immunol. 2004;172(11):7103–9.

    Article  CAS  PubMed  Google Scholar 

  73. Oda T, Yamaguchi A, Yokoyama M, Shimizu K, Toyota K, Nikai T, Matsumoto K. Plasma proteomic changes during hypothermic and normothermic cardiopulmonary bypass in aortic surgeries. Int J Mol Med. 2014;34(4):947–56.

    PubMed  PubMed Central  Google Scholar 

  74. Libman RB, Wirkowski E, Alvir J, Rao TH. Conditions that mimic stroke in the emergency department. Implications for acute stroke trials. Arch Neurol. 1995;52(11):1119–22.

    Article  CAS  PubMed  Google Scholar 

  75. Okamoto K, Yamori Y, Nagaoka A. Establishment of the stroke-prone spontaneously hypertensive rats (SHR). Circ Res 1974;33/34:143–53.

    Google Scholar 

  76. Sironi L, Tremoli E, Miller I, Guerrini U, Calvio AM, Eberini I, Gemeiner M, Asdente M, Paoletti R, Gianazza E. Acute-phase proteins before cerebral ischemia in stroke-prone rats: identification by proteomics. Stroke. 2001;32(3):753–60.

    Article  CAS  PubMed  Google Scholar 

  77. Campos-Martorell M, Salvador N, Monge M, Canals F, Garcia-Bonilla L, Hernandez-Guillamon M, Ayuso MI, Chacon P, Rosell A, Alcazar A, Montaner J. Brain proteomics identifies potential simvastatin targets in acute phase of stroke in a rat embolic model. J Neurochem. 2014;130(2):301–12.

    Article  CAS  PubMed  Google Scholar 

  78. Dawson J, Walters M, Delles C, Mischak H, Mullen W. Urinary proteomics to support diagnosis of stroke. PLoS One. 2012;7(5):e35879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keith D, Nichols G, Gullion C, Betz-Brown J, Smith D. Longitudinal follow up and outcomes among a population with chronic kidney disease in a large managed care organisation. Arch Intern Med. 2004;164:659–63.

    Article  PubMed  Google Scholar 

  80. Go A, Chertow G, Fan D, McCulloch C, Hsu C. Chronic kidney disease and the risks of death, cardiovascular events and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  81. Hemmelgarn B, Manns B, Lloyd A, James M, Klarenbach S, Quinn R, Wiebe N, Tonelli M, for The Alberta Kidney Disease Network. Relation between kidney function, proteinuria and adverse outcomes. JAMA. 2010;303:423–9.

    Article  CAS  PubMed  Google Scholar 

  82. Di Angelantonio E, Chowdhury R, Sarwar N, Aspelund T, Danesh J, Gudnason V. Chronic kidney disease and risk of major cardiovascular disease and non-vascular mortality: prospective population based cohort study. Br Med J. 2010;341:c4986.

    Article  Google Scholar 

  83. Perrone R, Madias N, Levey A. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992;38:1933–53.

    CAS  PubMed  Google Scholar 

  84. Fioretto P, Steffes M, Mauer S. Glomerular structure in nonproteinuric insulin-dependent diabetic patients with various levels of microalbuminuria. Diabetes. 1994;43:1358–64.

    Article  CAS  PubMed  Google Scholar 

  85. KDIGO. KDIGO 2012 clinical practice guideline for evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:73–90.

    Article  Google Scholar 

  86. National Institute for Health and Care Excellence (NICE). Type 2 diabetes in adults: management. https://www.nice.org.uk/guidance/ng28. Accessed 2 May 2016.

  87. Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(3):542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Afsar B, Turkmen K, Covic A, Kanbay M. An update on coronary artery disease and chronic kidney disease. Int J Nephrol. 2014;2014:767424.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nguyen-Khoa T, Massy ZA, De Bandt JP, Kebede M, Salama L, Lambrey G, Witko-Sarsat V, Drueke TB, Lacour B, Thevenin M. Oxidative stress and haemodialysis: role of inflammation and duration of dialysis treatment. Nephrol Dial Transplant. 2001;16(2):335–40.

    Article  CAS  PubMed  Google Scholar 

  90. Glorieux G, Mullen W, Duranton F, Filip S, Gayrard N, Husi H, Schepers E, Neirynck N, Schanstra J, Jankowski J, Mischak H, Argiles A, Vanholder R, Vlahou A, Klein J. New insights in molecular mechanisms involved in chronic kidney disease using high-resolution plasma proteome analysis. Nephrol Dial Transplant. 2015;30(11):1842–52.

    Article  PubMed  Google Scholar 

  91. Mullen W, Delles C, Mischak H, members of the EuroKUP COST Action. Urinary proteomics in the assessment of chronic kidney disease. Curr Opin Nephrol Hypertens. 2011;20:654–61.

    Article  CAS  PubMed  Google Scholar 

  92. Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, Coon JJ, Dakna M, Decramer S, Delles C, Dominiczak AF, Ehrich JH, Eitner F, Fliser D, Frommberger M, Ganser A, Girolami MA, Golovko I, Gwinner W, Haubitz M, Herget-Rosenthal S, Jankowski J, Jahn H, Jerums G, Julian BA, Kellmann M, Kliem V, Kolch W, Krolewski AS, Luppi M, Massy Z, Melter M, Neususs C, Novak J, Peter K, Rossing K, Rupprecht H, Schanstra JP, Schiffer E, Stolzenburg JU, Tarnow L, Theodorescu D, Thongboonkerd V, Vanholder R, Weissinger EM, Mischak H, Schmitt-Kopplin P. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010;9(11):2424–37.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Argiles A, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U, Osaba L, Delles C, Mourad G, Weinberger K, Mischak H. CKD 273, a new proteomics classifier assessing CKD and its prognosis. PLoS One. 2013;8(5):e62837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schanstra JP, Zurbig P, Alkhalaf A, Argiles A, Bakker SJ, Beige J, Bilo HJ, Chatzikyrkou C, Dakna M, Dawson J, Delles C, Haller H, Haubitz M, Husi H, Jankowski J, Jerums G, Kleefstra N, Kuznetsova T, Maahs DM, Menne J, Mullen W, Ortiz A, Persson F, Rossing P, Ruggenenti P, Rychlik I, Serra AL, Siwy J, Snell-Bergeon J, Spasovski G, Staessen JA, Vlahou A, Mischak H, Vanholder R. Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol. 2015;26(8):1999–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mogensen C. Microalbuminuria predicts clinical proteinuria and early mortality in maturity onset diabetes. N Engl J Med. 1984;310:356–60.

    Article  CAS  PubMed  Google Scholar 

  96. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia. 1989;32(4):219–26.

    Article  CAS  PubMed  Google Scholar 

  97. Bruno G, Merletti F, Bargero G, Novelli G, Melis D, Soddu A, Perotto M, Pagano G, Cavallo-Perin P. Estimated glomerular filtration rate, albuminuria and mortality in type 2 diabetes: the Casale Monferrato study. Diabetologia. 2007;50:941–8.

    Article  CAS  PubMed  Google Scholar 

  98. Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M, Patel A, Cass A, Neal B, Poulter N, Mogensen CE, Cooper M, Marre M, Williams B, Hamet P, Mancia G, Woodward M, MacMahon S, Chalmers J. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009;20(8):1813–21.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rossing K, Mischak H, Dakna M, Zurbig P, Novak J, Julian B, Good D, Coon J, Tarnow L, Rossing P, on behalf of the PREDICTIONS Network. Urinary proteomics in diabetes and CKD. J Am Soc Nephrol. 2008;19:1283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Alkhalaf A, Zurbig P, Bakker SJ, Bilo HJ, Cerna M, Fischer C, Fuchs S, Janssen B, Medek K, Mischak H, Roob JM, Rossing K, Rossing P, Rychlik I, Sourij H, Tiran B, Winklhofer-Roob BM, Navis GJ. Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy. PLoS One. 2010;5(10):e13421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Zurbig P, Jerums G, Hovind P, Macisaac RJ, Mischak H, Nielsen SE, Panagiotopoulos S, Persson F, Rossing P. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61(12):3304–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Siwy J, Schanstra JP, Argiles A, Bakker SJ, Beige J, Boucek P, Brand K, Delles C, Duranton F, Fernandez-Fernandez B, Jankowski ML, Al KM, Kunt T, Lajer M, Lichtinghagen R, Lindhardt M, Maahs DM, Mischak H, Mullen W, Navis G, Noutsou M, Ortiz A, Persson F, Petrie JR, Roob JM, Rossing P, Ruggenenti P, Rychlik I, Serra AL, Snell-Bergeon J, Spasovski G, Stojceva-Taneva O, Trillini M, von der Leyen H, Winklhofer-Roob BM, Zurbig P, Jankowski J. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant. 2014;29(8):1563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Andersen S, Mischak H, Zurbig P, Parving H, Rossing P. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria. BMC Nephrol. 2010;11:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Roscioni SS, de Zeeuw D, Hellemons ME, Mischak H, Zurbig P, Bakker SJ, Gansevoort RT, Reinhard H, Persson F, Lajer M, Rossing P, Lambers Heerspink HJ. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia. 2013;56(2):259–67.

    Article  CAS  PubMed  Google Scholar 

  105. Lindhardt M, Persson F, Currie G, Pontillo C, Beige J, Delles C, von der Leyen H, Mischak H, Navis G, Noutsou M, Ortiz A, Ruggenenti PL, Rychlik I, Spasovski G, Rossing P. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial. BMJ Open. 2016;6(3):e010310.

    Google Scholar 

  106. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian Jr RK, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJ, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates III JR, Hermjakob H. The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol. 2007;25(8):887–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Delles MD, FRCP, FAHA, FBHS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Currie, G., Matt, P., Delles, C. (2016). Clinical Cardiovascular Proteomics. In: Agnetti, G., Lindsey, M., Foster, D. (eds) Manual of Cardiovascular Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-319-31828-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31828-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31826-4

  • Online ISBN: 978-3-319-31828-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics