Skip to main content

Synergizing Proteomic and Metabolomic Data to Study Cardiovascular Systems

  • Chapter
  • First Online:
  • 679 Accesses

Abstract

Investigation of biological systems requires an understanding of the crosstalk between complex regulatory processes and how disturbances in these processes contribute to the development of a disease phenotype. While proteomic studies have significantly advanced our understanding of the types and relative amounts of proteins in complex samples, these analyses are now being complemented by additional -omic platforms. For example, global metabolic investigations are increasingly leveraged to determine the underlying mechanisms of cardiovascular diseases. These investigations allow the determination and relative quantification of metabolites in complex samples. As our ability to analyze and quantify large experimental proteomic and metabolomic data sets continues to improve, combining these data sets allows for the identification of pathways and sub-pathways that would not be detected if either analytical method was used in isolation. In this book chapter, we discuss how to design a cardiovascular metabolomic experiment and how to utilize combined proteomic and metabolomic data for a more comprehensive examination of biological systems. In the near future, improved software to manage the integration of large datasets and development of new bioinformatics tools will help to harness the potential of these large datasets and make integrative –omics more accessible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fiehn O. Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol. 2002;48(1–2):155–71. Epub 2002/02/28.

    Article  CAS  PubMed  Google Scholar 

  2. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–9. Epub 1999/12/22.

    Article  CAS  PubMed  Google Scholar 

  3. Zajac J, Shrestha A, Patel P, Poretsky L. The main events in the history of diabetes mellitus. In: Poretsky L, editor. Principles of diabetes mellitus. 2nd ed. New York: Springer; 2010. p. 3–16.

    Chapter  Google Scholar 

  4. Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet. 2001;2:343–72. Epub 2001/11/10.

    Article  CAS  PubMed  Google Scholar 

  5. Vinayavekhin N, Homan EA, Saghatelian A. Exploring disease through metabolomics. ACS Chem Biol. 2010;5(1):91–103. Epub 2009/12/22.

    Article  CAS  PubMed  Google Scholar 

  6. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012;126(9):1110–20. Epub 2012/08/29.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee J, Jung Y, Park JY, Lee SH, Ryu DH, Hwang GS. LC/MS-based polar metabolite profiling reveals gender differences in serum from patients with myocardial infarction. J Pharm Biomed Anal. 2015;115:475–86. Epub 2015/08/25.

    Article  CAS  PubMed  Google Scholar 

  8. Mayr M, Siow R, Chung YL, Mayr U, Griffiths JR, Xu Q. Proteomic and metabolomic analysis of vascular smooth muscle cells: role of PKCdelta. Circ Res. 2004;94(10):e87–96. Epub 2004/05/08.

    Article  CAS  PubMed  Google Scholar 

  9. Mayr M, Yusuf S, Weir G, Chung YL, Mayr U, Yin X, et al. Combined metabolomic and proteomic analysis of human atrial fibrillation. J Am Coll Cardiol. 2008;51(5):585–94. Epub 2008/02/02.

    Article  CAS  PubMed  Google Scholar 

  10. Blanchet L, Smolinska A, Attali A, Stoop MP, Ampt KA, van Aken H, et al. Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis. BMC Bioinform. 2011;12:254. Epub 2011/06/24.

    Article  Google Scholar 

  11. Mayr M, May D, Gordon O, Madhu B, Gilon D, Yin X, et al. Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome. J Mol Cell Cardiol. 2011;50(6):982–90. Epub 2011/03/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Souza AI, Cardin S, Wait R, Chung YL, Vijayakumar M, Maguy A, et al. Proteomic and metabolomic analysis of atrial profibrillatory remodelling in congestive heart failure. J Mol Cell Cardiol. 2010;49(5):851–63. Epub 2010/07/27.

    Article  PubMed  Google Scholar 

  13. Alonso A, Marsal S, Julia A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:23. Epub 2015/03/24.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vu TN, Laukens K. Getting your peaks in line: a review of alignment methods for NMR spectral data. Metabolites. 2013;3(2):259–76. Epub 2013/01/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vu TN, Valkenborg D, Smets K, Verwaest KA, Dommisse R, Lemiere F, et al. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinform. 2011;12:405. Epub 2011/10/22.

    Article  Google Scholar 

  16. De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML, et al. NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal Chem. 2008;80(10):3783–90. Epub 2008/04/19.

    Article  PubMed  Google Scholar 

  17. Wilmes A, Limonciel A, Aschauer L, Moenks K, Bielow C, Leonard MO, et al. Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics. 2013;79:180–94. Epub 2012/12/15.

    Article  CAS  PubMed  Google Scholar 

  18. Fuhrer T, Zamboni N. High-throughput discovery metabolomics. Curr Opin Biotechnol. 2015;31:73–8. Epub 2014/09/10.

    Article  CAS  PubMed  Google Scholar 

  19. Vinayavekhin N, Saghatelian A. Chapter 30: Untargeted metabolomics. In: Ausubel FM, et al., editor. Current protocols in molecular biology. New Jersey: John Wiley & Sons, Inc; 2010. Unit 30.1 1–24. Epub 2010/04/08.

    Google Scholar 

  20. Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4(18):2249–64. Epub 2012/10/11.

    Article  CAS  PubMed  Google Scholar 

  21. Lindsey ML, Gomes AV, Smith S, de Castro Brás LE. How to design a cardiovascular proteomics experiment. 2015.

    Google Scholar 

  22. Lindsey ML, Mayr M, Gomes AV, Delles C, Arrell DK, Murphy AM, et al. Transformative impact of proteomics on cardiovascular health and disease: a scientific statement from the American Heart Association. Circulation. 2015;132(9):852–72. Epub 2015/07/22.

    Article  CAS  PubMed  Google Scholar 

  23. Naz S, Vallejo M, Garcia A, Barbas C. Method validation strategies involved in non-targeted metabolomics. J Chromatogr A. 2014;1353:99–105. Epub 2014/05/09.

    Article  CAS  PubMed  Google Scholar 

  24. Roberts LD, Souza AL, Gerszten RE, Clish CB. Chapter 30: Targeted metabolomics. In: Ausubel FM, et al., editor. Current protocols in molecular biology. New Jersey: John Wiley & Sons, Inc; 2012. Unit 30.2 1–24. Epub 2012/04/04.

    Google Scholar 

  25. Mast C, Lyan B, Joly C, Centeno D, Giacomoni F, Martin JF, et al. Assessment of protein modifications in liver of rats under chronic treatment with paracetamol (acetaminophen) using two complementary mass spectrometry-based metabolomic approaches. J Proteomics. 2015;120:194–203. Epub 2015/03/31.

    Article  CAS  PubMed  Google Scholar 

  26. Teul J, Garcia A, Tunon J, Martin-Ventura JL, Tarin N, Bescos LL, et al. Targeted and non-targeted metabolic time trajectory in plasma of patients after acute coronary syndrome. J Pharm Biomed Anal. 2011;56(2):343–51. Epub 2011/06/24.

    Article  CAS  PubMed  Google Scholar 

  27. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–83. Epub 2011/07/02.

    Article  CAS  PubMed  Google Scholar 

  28. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692–703. Epub 2007/11/17.

    Article  CAS  PubMed  Google Scholar 

  29. Sellick CA, Hansen R, Stephens GM, Goodacre R, Dickson AJ. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc. 2011;6(8):1241–9. Epub 2011/07/30.

    Article  CAS  PubMed  Google Scholar 

  30. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8(1):17–32. Epub 2012/12/12.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu ZJ, Schultz AW, Wang J, Johnson CH, Yannone SM, Patti GJ, et al. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc. 2013;8(3):451–60. Epub 2013/02/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blatherwick EQ, Svensson CI, Frenguelli BG, Scrivens JH. Localisation of adenine nucleotides in heat-stabilised mouse brains using ion mobility enabled MALDI imaging. Int J Mass Spectrometry. 2013;345–347:19–27.

    Article  Google Scholar 

  33. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011;14(2):264–71. Epub 2011/08/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leon Z, Garcia-Canaveras JC, Donato MT, Lahoz A. Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis. 2013;34(19):2762–75. Epub 2013/02/26.

    CAS  PubMed  Google Scholar 

  35. Dettmer K, Nurnberger N, Kaspar H, Gruber MA, Almstetter MF, Oefner PJ. Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem. 2011;399(3):1127–39. Epub 2010/12/03.

    Article  CAS  PubMed  Google Scholar 

  36. Sellick CA, Hansen R, Maqsood AR, Dunn WB, Stephens GM, Goodacre R, et al. Effective quenching processes for physiologically valid metabolite profiling of suspension cultured Mammalian cells. Anal Chem. 2009;81(1):174–83. Epub 2008/12/09.

    Article  CAS  PubMed  Google Scholar 

  37. Sellick C, Knight D, Croxford A, Maqsood A, Stephens G, Goodacre R, et al. Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: matching extraction approaches to cell type and metabolite targets. Metabolomics. 2010;6(3):427–38.

    Article  CAS  Google Scholar 

  38. Lei Z, Huhman DV, Sumner LW. Mass spectrometry strategies in metabolomics. J Biol Chem. 2011;286(29):25435–42. Epub 2011/06/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kind T, Wohlgemuth G, Leedo Y, Lu Y, Palazoglu M, Shahbaz S, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;81(24):10038–48. Epub 2009/11/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, et al. Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A. 2007;1157(1–2):414–21. Epub 2007/06/05.

    Article  CAS  PubMed  Google Scholar 

  41. Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 2008;26(4):960–8. Epub 2008/01/26.

    Article  CAS  PubMed  Google Scholar 

  42. Wilson ID. Chapter 5: Chromatographic and electrophoretic separations combined with mass spectrometry for metabonomics. In: Lindon JC, Nicholson JK, Holmes E, editors. The handbook of metabonomics and metabolomics. Amsterdam: Elsevier Science B.V; 2007. p. 149–69.

    Google Scholar 

  43. Xu F, Zou L, Ong CN. Multiorigination of chromatographic peaks in derivatized GC/MS metabolomics: a confounder that influences metabolic pathway interpretation. J Proteome Res. 2009;8(12):5657–65. Epub 2009/10/20.

    Article  CAS  PubMed  Google Scholar 

  44. Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–9. Epub 2012/03/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27(6):747–51. Epub 2006/01/13.

    Article  CAS  PubMed  Google Scholar 

  46. Dunn W, Erban A, Weber RM, Creek D, Brown M, Breitling R, et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics. 2013;9(1):44–66.

    Article  CAS  Google Scholar 

  47. Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A. 2006;1125(1):76–88. Epub 2006/06/09.

    Article  CAS  PubMed  Google Scholar 

  48. Buescher JM, Moco S, Sauer U, Zamboni N. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem. 2010;82(11):4403–12. Epub 2010/05/04.

    Article  CAS  PubMed  Google Scholar 

  49. Ross A, Schlotterbeck G, Dieterle F, Senn H. Chapter 3: NMR spectroscopy techniques for application to metabonomics. In: Lindon JC, Nicholson JK, Holmes E, editors. The handbook of metabonomics and metabolomics. Amsterdam: Elsevier Science B.V; 2007. p. 55–112.

    Chapter  Google Scholar 

  50. Brown FF, Campbell ID, Kuchel PW, Rabenstein DC. Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS Lett. 1977;82(1):12–6. Epub 1977/10/01.

    Article  CAS  PubMed  Google Scholar 

  51. Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ. Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem. 1984;30(3):426–32. Epub 1984/03/01.

    CAS  PubMed  Google Scholar 

  52. Lindon JC, Nicholson JK. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu Rev Anal Chem. 2008;1:45–69. Epub 2008/07/19.

    Article  CAS  Google Scholar 

  53. Beckonert O, Coen M Fau KHC, Keun Hc Fau WY, Wang Y Fau ETMD, Ebbels Tm Fau HE, Holmes E Fau LJC, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc. 2010;5(6):1019–32.

    Google Scholar 

  54. Wishart DS. Advances in metabolite identification. Bioanalysis. 2011;3(15):1769–82.

    Article  CAS  PubMed  Google Scholar 

  55. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37(Database issue):D603–10. Epub 2008/10/28.

    Article  CAS  PubMed  Google Scholar 

  56. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank. Nucleic Acids Res. 2008;36(Database issue):D402–8. Epub 2007/11/07.

    CAS  PubMed  Google Scholar 

  57. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, et al. Metabolite identification via the Madison metabolomics consortium database. Nat Biotechnol. 2008;26(2):162–4. Epub 2008/02/09.

    Article  CAS  PubMed  Google Scholar 

  58. Ludwig C, Easton J, Lodi A, Tiziani S, Manzoor S, Southam A, et al. Birmingham metabolite library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics. 2012;8(1):8–18.

    Article  CAS  Google Scholar 

  59. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem. 2006;78(13):4430–42. Epub 2006/07/01.

    Article  CAS  PubMed  Google Scholar 

  60. Ellinger JJ, Chylla RA, Ulrich EL, Markley JL. Databases and software for NMR-based metabolomics. Current Metabolomics. 2013;1(1):15–27.

    Google Scholar 

  61. Sansone Sa Fau FT, Fan T Fau GR, Goodacre R Fau GJL, Griffin J Fau HNW, Hardy Nw Fau K-DR, Kaddurah-Daouk R Fau KBS, et al. The metabolomics standards initiative. Nature Biotech. 2007;25:846–8.

    Google Scholar 

  62. Sauro HM, Ingalls B. Conservation analysis in biochemical networks: computational issues for software writers. Biophys Chem. 2004;109(1):1–15. Epub 2004/04/03.

    Article  CAS  PubMed  Google Scholar 

  63. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, et al. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform. 2010;11(1):40–79. Epub 2009/12/04.

    Article  CAS  PubMed  Google Scholar 

  64. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2014;42(Database issue):D459–71. Epub 2013/11/15.

    Article  CAS  PubMed  Google Scholar 

  65. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. Epub 2003/11/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Junker BH, Klukas C, Schreiber F. VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform. 2006;7:109. Epub 2006/03/08.

    Article  Google Scholar 

  67. Kessler N, Neuweger H, Bonte A, Langenkamper G, Niehaus K, Nattkemper TW, et al. MeltDB 2.0-advances of the metabolomics software system. Bioinformatics. 2013;29(19):2452–9. Epub 2013/08/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Clasquin MF, Melamud E, Rabinowitz JD. Chapter 14: LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. In: Editoral board, Baxevanis AD, et al., editors. Current protocols in bioinformatics. 2012. Unit 14.11. Epub 2012/03/06.

    Google Scholar 

  69. Kaever A, Landesfeind M, Feussner K, Mosblech A, Heilmann I, Morgenstern B, et al. MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data. Metabolomics. 2015;11(3):764–77. Epub 2015/05/15.

    Article  CAS  PubMed  Google Scholar 

  70. Barupal DK, Haldiya PK, Wohlgemuth G, Kind T, Kothari SL, Pinkerton KE, et al. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinform. 2012;13:99. Epub 2012/05/18.

    Article  Google Scholar 

  71. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251–7. Epub 2015/04/22.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics. 2010;26(12):i255–60. Epub 2010/06/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Huser AT, et al. Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Syst Biol. 2009;3:82. Epub 2009/08/25.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jorgenrud B, Jalanko M, Helio T, Jaaskelainen P, Laine M, Hilvo M, et al. The metabolome in finnish carriers of the MYBPC3-Q1061X mutation for hypertrophic cardiomyopathy. PLoS One. 2015;10(8):e0134184. Epub 2015/08/13.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Altmaier E, Fobo G, Heier M, Thorand B, Meisinger C, Romisch-Margl W, et al. Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism. Eur J Epidemiol. 2014;29(5):325–36. Epub 2014/05/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 1994;60(10):3724–31. Epub 1994/10/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fell DA. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992;286(Pt 2):313–30. Epub 1992/09/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol. 2000;18(3):326–32. Epub 2000/03/04.

    Article  CAS  PubMed  Google Scholar 

  79. Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol. 2010;28(3):245–8. Epub 2010/03/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. May P, Christian N, Ebenhoh O, Weckwerth W, Walther D. Integration of proteomic and metabolomic profiling as well as metabolic modeling for the functional analysis of metabolic networks. Methods Mol Biol. 2011;694:341–63. Epub 2010/11/18.

    Article  CAS  PubMed  Google Scholar 

  81. Mayr M, Chung YL, Mayr U, Yin X, Ly L, Troy H, et al. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler Thromb Vasc Biol. 2005;25(10):2135–42. Epub 2005/08/27.

    Article  CAS  PubMed  Google Scholar 

  82. Mayr M, Liem D, Zhang J, Li X, Avliyakulov NK, Yang JI, et al. Proteomic and metabolomic analysis of cardioprotection: interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. J Mol Cell Cardiol. 2009;46(2):268–77. Epub 2008/11/26.

    Article  CAS  PubMed  Google Scholar 

  83. Mayr M, Zampetaki A, Sidibe A, Mayr U, Yin X, De Souza AI, et al. Proteomic and metabolomic analysis of smooth muscle cells derived from the arterial media and adventitial progenitors of apolipoprotein E-deficient mice. Circ Res. 2008;102(9):1046–56. Epub 2008/04/05.

    Article  CAS  PubMed  Google Scholar 

  84. Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W. Integration of metabolomic and proteomic phenotypes: analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Mol Cell Proteomics MCP. 2008;7(9):1725–36. Epub 2008/05/01.

    Article  CAS  PubMed  Google Scholar 

  85. Cao H, Zhang A, Sun H, Zhou X, Guan Y, Liu Q, et al. Metabolomics-proteomics profiles delineate metabolic changes in kidney fibrosis disease. Proteomics. 2015;15(21):3699–710. Epub 2015/08/11..

    Google Scholar 

  86. Chen L, Li J, Guo T, Ghosh S, Koh SK, Tian D, et al. Global metabonomic and proteomic analysis of human conjunctival epithelial cells (IOBA-NHC) in response to hyperosmotic stress. J Proteome Res. 2015;14(9):3982–95. Epub 2015/08/12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gilda, J.E., Folmes, C.D.L., Cheah, J.X., Innes-Gawn, T., Lindsey, M.L., Gomes, A.V. (2016). Synergizing Proteomic and Metabolomic Data to Study Cardiovascular Systems. In: Agnetti, G., Lindsey, M., Foster, D. (eds) Manual of Cardiovascular Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-319-31828-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31828-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31826-4

  • Online ISBN: 978-3-319-31828-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics