Skip to main content

Post-translational Modifications in the Cardiovascular Proteome

  • Chapter
  • First Online:
Manual of Cardiovascular Proteomics

Abstract

The analysis of post-translational modifications is critical for understanding the regulation of protein function in the heart. These small, often charged, groups are added to a protein’s structure to modulate its activity, localization or associations. The development of proteomic technologies has greatly improved the identification and subsequent characterization of these modifications. However, due to the complex nature of the cardiovascular proteome, a particular post-translational modification may represent only a tiny fraction of the milieu. Additionally, some modifications are too labile for mass spectrometry analysis. To address these limitations, a variety of techniques and strategies have been developed to specifically target and improve the detection of these modifications. In the following chapter, we review the challenges and solutions to identifying several prominent post-translational modifications in the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21(3):255–61.

    Article  CAS  PubMed  Google Scholar 

  2. Liddy KA, White MY, Cordwell SJ. Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics. Genome Med [Internet]. 2013;5(2):20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23445784.

  3. Smith LE, White MY. The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin Appl [Internet]. 2014;8(7–8):506–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24961403.

    Google Scholar 

  4. James P, Inui M, Tada M, Chiesi M, Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989;342(6245):90–2.

    Article  CAS  PubMed  Google Scholar 

  5. Wegener A, Simmerman H, Lindemann J, Jones L. Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J Biol Chem [Internet]. 1989;264(19):11468. Available from: http://www.jbc.org/content/264/19/11468.abstract.

  6. Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res. 2013;112(2):382–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Buchanan BB, Balmer Y. Redox regulation: a broadening horizon. Annu Rev Plant Biol. 2005;56:187–220.

    Article  CAS  PubMed  Google Scholar 

  8. Bae YS, Oh H, Rhee SG, Yoo YD. Regulation of reactive oxygen species generation in cell signaling. Mol Cells [Internet]. 2011;32(6):491–509. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887685/.

    Google Scholar 

  9. Shao D, Oka S, Brady CD, Haendeler J, Eaton P, Sadoshima J. Redox modification of cell signaling in the cardiovascular system. J Mol Cell Cardiol [Internet]. 2012;52(3):550–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3237398&tool=pmcentrez&rendertype=abstract.

  10. Canton M, Menazza S, Sheeran FL, Polverino De Laureto P, Di Lisa F, Pepe S. Oxidation of myofibrillar proteins in human heart failure. J Am Coll Cardiol [Internet]. 2011;57(3):300–9. Available from: http://dx.doi.org/10.1016/j.jacc.2010.06.058.

    Google Scholar 

  11. Canton M, Neverova I, Menabò R, Van Eyk J, Di Lisa F. Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. Am J Physiol Heart Circ Physiol. 2004;286(3):H870–7.

    Article  CAS  PubMed  Google Scholar 

  12. Canton M, Skyschally A, Menabò R, Boengler K, Gres P, Schulz R, et al. Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J [Internet]. 2006;27(7):875–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16434410.

    Google Scholar 

  13. Zhao Y, Jensen ON. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 2009;9(20):4632–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang J, Wang F, Ye M, Zou H. Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications. J Chromatogr A [Internet]. 2014;1372C:1–17. Available from: http://www.sciencedirect.com/science/article/pii/S0021967314017208.

    Google Scholar 

  15. Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods [Internet]. 2013;10(7):634–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3943163&tool=pmcentrez&rendertype=abstract.

  16. Murray CI, Van Eyk JE. Chasing cysteine oxidative modifications: proteomic tools for characterizing cysteine redox status. Circ Cardiovasc Genet. 2012;5(5):1–10.

    Article  Google Scholar 

  17. Seet BT, Dikic I, Zhou M-M, Pawson T. Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol. 2006;7(7):473–83.

    Article  CAS  PubMed  Google Scholar 

  18. Roux PP, Thibault P. The coming of age of phosphoproteomics – from large data sets to inference of protein functions. Mol Cell Proteomics [Internet]. 2013;12(12):3453–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24037665.

    Google Scholar 

  19. Sun Z, Hamilton KL, Reardon KF. Phosphoproteomics and molecular cardiology: techniques, applications and challenges. J Mol Cell Cardiol. 2012;53(3):354–68.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffert JD, Knepper MA. Taking aim at shotgun phosphoproteomics. Anal Biochem. 2008;375(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  21. Ficarro SB, Zhang Y, Carrasco-Alfonso MJ, Garg B, Adelmant G, Webber JT, et al. Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis. Mol Cell Proteomics. 2011;10(11):O111.011064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Villén J, Gygi SP. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc. 2008;3(10):1630–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McNulty DE, Annan RS. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics. 2008;7(5):971–80.

    Article  CAS  PubMed  Google Scholar 

  24. Macek B, Mann M, Olsen JV. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol. 2009;49:199–221.

    Article  CAS  PubMed  Google Scholar 

  25. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A. 2004;101(33):12130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr. 1990;499:177–96.

    Article  CAS  PubMed  Google Scholar 

  27. Nühse T, Yu K, Salomon A. Isolation of phosphopeptides by immobilized metal ion affinity chromatography. Curr Protoc Mol Biol. 2007;Chapter 18:Unit 18.13. pp. 1–23.

    Google Scholar 

  28. Andersson L, Porath J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem. 1986;154(1):250–4.

    Article  CAS  PubMed  Google Scholar 

  29. Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem. 2004;76(14):3935–43.

    Article  CAS  PubMed  Google Scholar 

  30. Nita-Lazar A, Saito-Benz H, White FM. Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics. 2008;8(21):4433–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aryal UK, Ross ARS. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(2):219–31.

    Article  CAS  PubMed  Google Scholar 

  32. Sano A, Nakamura H. Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides: application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Anal Sci. 2004;20(5):861–4.

    Article  CAS  PubMed  Google Scholar 

  33. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4(7):873–86.

    Article  CAS  PubMed  Google Scholar 

  34. Collins MO, Yu L, Choudhary JS. Analysis of protein phosphorylation on a proteome-scale. Proteomics. 2007;7(16):2751–68.

    Article  CAS  PubMed  Google Scholar 

  35. Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 2004;101(26):9528–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang F, Song C, Cheng K, Jiang X, Ye M, Zou H. Perspectives of comprehensive phosphoproteome analysis using shotgun strategy. Anal Chem. 2011;83(21):8078–85.

    Article  CAS  PubMed  Google Scholar 

  37. Stingl C, Ihling C, Ammerer G, Sinz A, Mechtler K. Application of different fragmentation techniques for the analysis of phosphopeptides using a hybrid linear ion trap-FTICR mass spectrometer. Biochim Biophys Acta Pro Proteomics. 2006;1764(12):1842–52.

    Article  CAS  Google Scholar 

  38. Beck F, Lewandrowski U, Wiltfang M, Feldmann I, Geiger J, Sickmann A, et al. The good, the bad, the ugly: validating the mass spectrometric analysis of modified peptides. Proteomics. 2011;11(6):1099–109.

    Article  CAS  PubMed  Google Scholar 

  39. Molina H, Horn DM, Tang N, Mathivanan S, Pandey A. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A. 2007;104(7):2199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Swaney DL, Wenger CD, Thomson JA, Coon JJ. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A. 2009;106(4):995–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Good DM, Wirtala M, McAlister GC, Coon JJ. Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics. 2007;6(11):1942–51.

    Article  CAS  PubMed  Google Scholar 

  42. Martin DMA, Nett IRE, Vandermoere F, Barber JD, Morrice NA, Ferguson MAJ. Prophossi: automating expert validation of phosphopeptide-spectrum matches from tandem mass spectrometry. Bioinformatics. 2010;26(17):2153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang X, Ye M, Han G, Dong X, Zou H. Classification filtering strategy to improve the coverage and sensitivity of phosphoproteome analysis. Anal Chem. 2010;82(14):6168–75.

    Article  CAS  PubMed  Google Scholar 

  44. Bakalarski CE, Haas W, Dephoure NE, Gygi SP. The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics. Anal Bioanal Chem. 2007;389(5):1409–19.

    Article  CAS  PubMed  Google Scholar 

  45. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3):635–48.

    Article  CAS  PubMed  Google Scholar 

  46. Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem. 1984;259(5):3308–17.

    CAS  PubMed  Google Scholar 

  47. Ma J, Hart GW. O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics [Internet]. 2014;11(1):8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4015695&tool=pmcentrez&rendertype=abstract.

  48. Ngoh GA, Facundo HT, Zafir A, Jones SP. O-GlcNAc signaling in the cardiovascular system. Circ Res. 2010;107(2):171–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Issad T, Masson E, Pagesy P. O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab [Internet]. 2010;36(6 Pt 1):423–35. Available from: http://dx.doi.org/10.1016/j.diabet.2010.09.001.

    Google Scholar 

  50. Vaidyanathan K, Wells L. Multiple tissue-specific roles for the O-GlcNAc post-translational modification in the induction of and complications arising from type II diabetes. J Biol Chem. 2014;289(50):34466–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Slawson C, Hart GW. O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer [Internet]. 2011;11(9):678–84. Available from: http://dx.doi.org/10.1038/nrc3114.

    Google Scholar 

  52. Zhang X, Ma L, Qi J, Shan H, Yu G, Gu Y. MAPK/ERK signaling pathway-induced hyper-O-GlcNAcylation enhances cancer malignancy. Mol Cell Biochem. 2015;410(1–2):101–10.

    Article  CAS  PubMed  Google Scholar 

  53. Lazarus BD, Love DC, Hanover JA. O-GlcNAc cycling: implications for neurodegenerative disorders. Int J Biochem Cell Biol [Internet]. 2009;41(11):2134–46. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2757632&tool=pmcentrez&rendertype=abstract.

  54. Wang P, Lazarus B, Forsythe M, Love D, Krause M, Hanover J. O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc Natl Acad Sci U S A. 2012;109(43):17669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jones SP, Zachara NE, Ngoh GA, Hill BG, Teshima Y, Bhatnagar A, et al. Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation. 2008;117(9):1172–82.

    Article  CAS  PubMed  Google Scholar 

  56. Champattanachai V, Marchase RB, Chatham JC. Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc. Am J Physiol Cell Physiol [Internet]. 2007;292(1):C178–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16899550.

    Google Scholar 

  57. Ramirez-Correa GA, Jin W, Wang Z, Zhong X, Gao WD, Dias WB, et al. O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. Circ Res. 2008;103:1354–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hédou J, Bastide B, Page A, Michalski J-C, Morelle W. Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle. Proteomics [Internet]. 2009;9(8):2139–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19322778.

    Google Scholar 

  59. Lunde IG, Aronsen JM, Kvaløy H, Qvigstad E, Sjaastad I, Tønnessen T, et al. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics. 2012;44(2):162–72.

    Article  CAS  PubMed  Google Scholar 

  60. Alfaro JF, Gong C-X, Monroe ME, Aldrich JT, Clauss TRW, Purvine SO, et al. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci U S A [Internet]. 2012;109(19):7280–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3358849&tool=pmcentrez&rendertype=abstract.

  61. Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, et al. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics. 2012;11(8):215–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hahne H, Sobotzki N, Nyberg T, Helm D, Borodkin VS, van Aalten DMF, et al. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J Proteome Res [Internet]. 2013;12(2):927–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23301498\n, http://dx.doi.org/10.1021/pr300967y.

    Google Scholar 

  63. Myers SA, Panning B, Burlingame AL. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2011;108(23):9490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Horsch M, Hoesch L, Vasella A, Rast DM. N-acetylglucosaminono-1,5-lactone oxime and the corresponding (phenylcarbamoyl)oxime. Novel and potent inhibitors of beta-N-acetylglucosaminidase. Eur J Biochem. 1991;197(3):815–8.

    Article  CAS  PubMed  Google Scholar 

  65. Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol. 2008;4(8):483–90.

    Article  CAS  PubMed  Google Scholar 

  66. Ramirez-Correa GA, Ferrando IM, Hart G, Murphy A. Detection of O-GlcNAc modifications on cardiac myofilament proteins. Methods Mol Biol [Internet]. 2013;1005:157–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23606256.

  67. Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, et al. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics. 2006;5(5):923–34.

    Article  CAS  PubMed  Google Scholar 

  68. Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL. Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci U S A [Internet]. 2009;106(22):8894–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19458039.

  69. Teo CF, Ingale S, Wolfert MA, Elsayed GA, Nöt LG, Chatham JC, et al. Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nat Chem Biol [Internet]. 2010;6(5):338–43. Available from: http://dx.doi.org/10.1038/nchembio.338.

    Google Scholar 

  70. Zhao P, Viner R, Teo CF, Boons GJ, Horn D, Wells L. Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J Proteome Res. 2011;10(9):4088–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vocadlo DJ, Hang HC, Kim E-J, Hanover JA, Bertozzi CR. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A. 2003;100(Track II):9116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gurcel C, Vercoutter-Edouart A-S, Fonbonne C, Mortuaire M, Salvador A, Michalski J-C, et al. Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Anal Bioanal Chem [Internet]. 2008;390(8):2089–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18369606.

    Google Scholar 

  73. Parker BL, Gupta P, Cordwell SJ, Larsen MR, Palmisano G. Purification and identification of O-GlcNAc-modified peptides using phosphate-based alkyne CLICK chemistry in combination with titanium dioxide chromatography and mass spectrometry. J Proteome Res [Internet]. 2011;10(4):1449–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21158410.

    Google Scholar 

  74. Chalkley RJ, Burlingame AL. Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol Cell Proteomics. 2003;2(3):182–90.

    Article  CAS  PubMed  Google Scholar 

  75. Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ. Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids. 2011;40(3):857–68.

    Article  CAS  PubMed  Google Scholar 

  76. Myers SA, Daou S, Affar EB, Burlingame A. Electron transfer dissociation (ETD): the mass spectrometric breakthrough essential for O-GlcNAc protein site assignments-a study of the O-GlcNAcylated protein host cell factor C1. Proteomics [Internet]. 2013;13(6):982–91. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3988289&tool=pmcentrez&rendertype=abstract.

  77. Klein AL, Berkaw MN, Buse MG, Ball LE. O-linked N-acetylglucosamine modification of insulin receptor substrate-1 occurs in close proximity to multiple SH2 domain binding motifs. Mol Cell Proteomics [Internet]. 2009;8(12):2733–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19671924\n, http://www.mcponline.org/content/8/12/2733.full.pdf.

    Google Scholar 

  78. Berk J, Maitra S, Dawdy A, Shabanowitz J, Hunt DF, Wilson K. O-GlcNAc regulates emerin binding to BAF in a chromatin- and lamin B-enriched “niche”. J Biol Chem. 2013;288:30192–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Greis KD, Hayes BK, Comer FI, Kirk M, Barnes S, Lowary TL, et al. Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal Biochem. 1996;234(1):38–49.

    Article  CAS  PubMed  Google Scholar 

  80. Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics. 2002;1(10):791–804.

    Article  CAS  PubMed  Google Scholar 

  81. Vosseller K, Hansen KC, Chalkley RJ, Trinidad JC, Wells L, Hart GW, et al. Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics. 2005;5(2):388–98.

    Article  CAS  PubMed  Google Scholar 

  82. Phillips DMP. The presence of Acetyl Groups in Collagen. Biochem J. 1965;87(258):258–63.

    Google Scholar 

  83. Hershko A, Heller H, Eytan E, Kaklij G, Rose IA. Role of the alpha-amino group of protein in ubiquitin-mediated protein breakdown. Proc Natl Acad Sci U S A. 1984;81(22):7021–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gershey EL, Vidali G, Allfrey VG. Chemical studies of histone acetylation: the occurrence of ε-N-acetyllysine in the f2a1 histone. J Biol Chem [Internet]. 1968;243(19):5018–22. Available from: http://www.jbc.org/content/243/19/5018.abstract.

  85. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res. 2006;98(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  86. Weinert BT, Wagner SA, Horn H, Henriksen P, Liu WR, Olsen JV, et al. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal. 2011;4(183):ra48.

    Article  CAS  PubMed  Google Scholar 

  87. Henriksen P, Wagner SA, Weinert BT, Sharma S, Bacinskaja G, Rehman M, et al. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics. 2012;11(11):1510–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 2009;8(2):215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science. 2010;327(5968):1004–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334(6057):806–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011;10(12):M111.012658.

    Google Scholar 

  92. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol. 2011;7(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  94. Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014;19(4):605–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics. 2007;6(5):812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hare JM, Stamler JS. NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest. 2005;115(3):509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol [Internet]. 2014;15(6):411–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24854789.

    Google Scholar 

  99. Weidinger A, Kozlov A. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules [Internet]. 2015;5(2):472–84. Available from: http://www.mdpi.com/2218-273X/5/2/472/.

    Google Scholar 

  100. Dhalla NS, Golfman L, Takeda S, Takeda N, Nagano M. Evidence for the role of oxidative stress in acute ischemic heart disease: a brief review. Can J Cardiol. 1999;15(5):587–93.

    CAS  PubMed  Google Scholar 

  101. Victorino VJ, Mencalha AL, Panis C. Post-translational modifications disclose a dual role for redox stress in cardiovascular pathophysiology. Life Sci [Internet]. Elsevier Inc.; 2015;129:42–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0024320514009291.

    Google Scholar 

  102. Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochimica et Biophysica Acta Mol Basis Dis. 2014;1852(2):232–42.

    Article  CAS  Google Scholar 

  103. Ziolo MT, Kohr MJ, Wang H. Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol. 2008;45(5):625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dezfulian C, Raat N, Shiva S, Gladwin MT. Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics. Cardiovasc Res. 2007;75(2):327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zweier JL, Talukder MAH. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  106. Kohr MJ, Evangelista AM, Ferlito M, Steenbergen C, Murphy E. S-nitrosylation of TRIM72 at cysteine 144 is critical for protection against oxidation-induced protein degradation and cell death. J Mol Cell Cardiol. 2014;69:67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kohr MJ, Sun J, Aponte A, Wang G, Gucek M, Murphy E, et al. Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ Res. 2011;108(4):418–26.

    Article  CAS  PubMed  Google Scholar 

  108. Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AHJ, et al. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem. 2008;283(50):35265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Roos G, Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med. 2011;51(2):314–26.

    Article  CAS  PubMed  Google Scholar 

  110. Wang S-B, Foster DB, Rucker J, O’Rourke B, Kass DA, Van Eyk JE. Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy. Circ Res. 2011;109(7):750–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Prysyazhna O, Eaton P. Redox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system. Front Pharmacol [Internet]. 2015;6(July):1–8. Available from: http://journal.frontiersin.org/Article/10.3389/fphar.2015.00139/abstract.

  112. Wang Y, Liu T, Wu C, Li H. A strategy for direct identification of protein S-nitrosylation sites by quadrupole time-of-flight mass spectrometry. J Am Soc Mass Spectrom. 2008;19(9):1353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mirza UA, Chait BT, Lander HM. Monitoring reactions of nitric oxide with peptides and proteins by electrospray ionization-mass spectrometry. J Biol Chem. 1995;270(29):17185–8.

    Article  CAS  PubMed  Google Scholar 

  114. Kohr MJ, Aponte A, Sun J, Gucek M, Steenbergen C, Murphy E. Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication. Circ Res. 2012;111(10):1308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jaffrey SR, Snyder SH. The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE. 2001;2001(86):l1.

    Google Scholar 

  116. Lin J, Steenbergen C, Murphy E, Sun J. Estrogen receptor-β activation results in s-nitrosylation of proteins involved in cardioprotection. Circulation. 2009;120(3):245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sun J, Kohr MJ, Nguyen T, Aponte AM, Connelly PS, Esfahani SG, et al. Disruption of caveolae blocks ischemic preconditioning-mediated S-nitrosylation of mitochondrial proteins. Antioxid Redox Signal. 2012;16(1):45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E. Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res. 2007;101(11):1155–63.

    Article  CAS  PubMed  Google Scholar 

  119. Santhanam L, Gucek M, Brown TR, Mansharamani M, Ryoo S, Lemmon CA, et al. Selective fluorescent labeling of S-nitrosothiols (S-FLOS): a novel method for studying S-nitrosation. Nitric Oxide Biol Chem. 2008;19(3):295–302.

    Article  CAS  Google Scholar 

  120. Kohr MJ, Aponte AM, Sun J, Wang G, Murphy E, Gucek M, et al. Characterization of potential S-nitrosylation sites in the myocardium. Am J Physiol Heart Circ Physiol. 2011;300(4):H1327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Forrester MT, Thompson JW, Foster MW, Nogueira L, Moseley MA, Stamler JS. Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol. 2009;27(6):557–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17(10):994–9.

    Article  CAS  PubMed  Google Scholar 

  123. Murray CI, Uhrigshardt H, O’Meally RN, Cole RN, Van Eyk JE. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol Cell Proteomics. 2012;11(2):M111.013441.

    Article  PubMed  CAS  Google Scholar 

  124. Pan K-T, Chen Y-Y, Pu T-H, Chao Y-S, Yang C-Y, Bomgarden RD, et al. Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia. Antioxid Redox Signal [Internet]. 2014;20(9):1365–81. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3936484&tool=pmcentrez&rendertype=abstract.

  125. Hao G, Derakhshan B, Shi L, Campagne F, Gross SS. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc Natl Acad Sci U S A. 2006;103(4):1012–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Camerini S, Polci ML, Restuccia U, Usuelli V, Malgaroli A, Bachi A. A novel approach to identify proteins modified by nitric oxide: the HIS-TAG switch method. J Proteome Res. 2007;6(8):3224–31.

    Article  CAS  PubMed  Google Scholar 

  127. Paige JS, Xu G, Stancevic B, Jaffrey SR. Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. Chem Biol. 2008;15(12):1307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Landino LM, Koumas MT, Mason CE, Alston JA. Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays. Biochem Biophys Res Commun. 2006;340(2):347–52.

    Article  CAS  PubMed  Google Scholar 

  129. Huang B, Chen C. An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic Biol Med. 2006;41(4):562–7.

    Article  CAS  PubMed  Google Scholar 

  130. Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R. Is ascorbate able to reduce disulfide bridges? A cautionary note. Nitric Oxide Biol Chem. 2008;19(3):252–8.

    Article  CAS  Google Scholar 

  131. Forrester MT, Foster MW, Benhar M, Stamler JS. Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med. 2009;46(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  132. Forrester MT, Foster MW, Stamler JS. Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem. 2007;282(19):13977–83.

    Article  CAS  PubMed  Google Scholar 

  133. Doulias P-T, Greene JL, Greco TM, Tenopoulou M, Seeholzer SH, Dunbrack RL, et al. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc Natl Acad Sci U S A. 2010;107(39):16958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, Von Löwenhielm HB, Holmgren A, et al. Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys. 2002;406(2):229–40.

    Article  CAS  PubMed  Google Scholar 

  135. Hamnell-Pamment Y, Lind C, Palmberg C, Bergman T, Cotgreave IA. Determination of site-specificity of S-glutathionylated cellular proteins. Biochem Biophys Res Commun. 2005;332(2):362–9.

    Article  CAS  PubMed  Google Scholar 

  136. Gould NS, Evans P, Martínez-Acedo P, Marino SM, Gladyshev VN, Carroll KS, et al. Site-specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks. Chem Biol [Internet]. 2015;22(7):965–75. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074552115002367.

    Google Scholar 

  137. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, et al. H2S signals through protein S-sulfhydration. Sci Signal. 2009;2(96):ra72.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, et al. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell. 2012;45(1):13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Brown JR, Hartley BS. Location of disulphide bridges by diagonal paper electrophoresis. The disulphide bridges of bovine chymotrypsinogen A. Biochem J. 1966;101(1):214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sommer A, Traut RR. Diagonal polyacrylamide-dodecyl sulfate gel electrophoresis for the identification of ribosomal proteins crosslinked with methyl-4-mercaptobutyrimidate. Proc Natl Acad Sci U S A. 1974;71(10):3946–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Avner BS, Shioura KM, Scruggs SB, Grachoff M, Geenen DL, Helseth DL, et al. Myocardial infarction in mice alters sarcomeric function via post-translational protein modification. Mol Cell Biochem. 2012;363(1–2):203–15.

    Article  CAS  PubMed  Google Scholar 

  142. Charles R, Jayawardhana T, Eaton P. Gel-based methods in redox proteomics. Biochimica et Biophysica Acta Gen Sub. 2014;1840(2):830–7.

    Article  CAS  Google Scholar 

  143. Gorman JJ, Wallis TP, Pitt JJ. Protein disulfide bond determination by mass spectrometry. Mass Spectrom Rev. 2002;21(3):183–216.

    Article  CAS  PubMed  Google Scholar 

  144. Tsai PL, Chen SF, Huang SY. Mass spectrometry-based strategies for protein disulfide bond identification. Rev Anal Chem. 2013;32(4):257–68.

    Article  CAS  Google Scholar 

  145. Saurin AT, Neubert H, Brennan JP, Eaton P. Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci U S A. 2004;101(52):17982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sethuraman M, McComb ME, Heibeck T, Costello CE, Cohen RA. Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol Cell Proteomics. 2004;3(3):273–8.

    Article  CAS  PubMed  Google Scholar 

  147. Sethuraman M, McComb ME, Huang H, Huang S, Heibeck T, Costello CE, et al. Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res. 2004;3(6):1228–33.

    Article  CAS  PubMed  Google Scholar 

  148. Charles RL, Schröder E, May G, Free P, Gaffney PRJ, Wait R, et al. Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics. 2007;6(9):1473–84.

    Article  CAS  PubMed  Google Scholar 

  149. Reddie KG, Seo YH, Muse Iii WB, Leonard SE, Carroll KS. A chemical approach for detecting sulfenic acid-modified proteins in living cells. Mol Biosyst. 2008;4(6):521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Leonard SE, Reddie KG, Carroll KS. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol. 2009;4(9):783–99.

    Article  CAS  PubMed  Google Scholar 

  151. Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol. 2011;8(1):57–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Paulech J, Liddy KA, Engholm-Keller K, White MY, Cordwell SJ. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic Acid post-translational modifications. Mol Cell Proteomics. 2015;14:609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Canet-Avilés RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101(24):9103–8.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wagner E, Luche S, Penna L, Chevallet M, Van Dorsselaer A, Leize-Wagner E, et al. A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress. Biochem J. 2002;366(Pt 3):777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kinumi T, Shimomae Y, Arakawa R, Tatsu Y, Shigeri Y, Yumoto N, et al. Effective detection of peptides containing cysteine sulfonic acid using matrix-assisted laser desorption/ionization and laser desorption/ionization on porous silicon mass spectrometry. J Mass Spectrom. 2006;41(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  156. Medzihradszky KF, Guan S, Maltby DA, Burlingame AL. Sulfopeptide fragmentation in electron-capture and electron-transfer dissociation. J Am Soc Mass Spectrom. 2007;18(9):1617–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher I. Murray PhD or Mark J. Kohr PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Murray, C.I., Chung, H.S., Papanicolaou, K.N., Foster, D.B., Kohr, M.J. (2016). Post-translational Modifications in the Cardiovascular Proteome. In: Agnetti, G., Lindsey, M., Foster, D. (eds) Manual of Cardiovascular Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-319-31828-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31828-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31826-4

  • Online ISBN: 978-3-319-31828-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics