Skip to main content

A Historical Perspective on Cardiovascular Proteomics

  • Chapter
  • First Online:
Manual of Cardiovascular Proteomics

Abstract

The “Manual of Cardiovascular Proteomics” is the result of the concerted effort of many experts in the field and it addresses the core technologies and approaches that have been implemented since its birth. Although each chapter can be read or studied independently of the others; depending on the level of interest, the whole manual should provide a detailed overview on what is available to the modern scientist who wants to embark on a cardiovascular proteomic expedition. Chapter 1 provides the historical perspective and describes the landmark discoveries that propelled the field forward, along with considerations on how to chose a specific approach and what the first steps to complete a proteomic experiment successfully should be. We hope that you will enjoy the first edition and are looking forward to your feedback in order to improve future editions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.

    PubMed  PubMed Central  Google Scholar 

  2. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: mycoplasma genitalium. Electrophoresis. 1995;16:1090–4.

    Article  CAS  PubMed  Google Scholar 

  3. Bini L, Calvete JJ, Turck N, Hochstrasser D, Sanchez J. Special Issue: “20 years of Proteomics” in memory of Vitaliano Pallini. J Proteomics. 2014;107:1–146.

    Article  PubMed  Google Scholar 

  4. Smith, L.M., Kelleher, N.L., and Consortium for Top Down Proteomics. Proteoform: a single term describing protein complexity. Nat Methods. 2013;10:186–7.

    Article  Google Scholar 

  5. Righetti PG. The Monkey King: a personal view of the long journey towards a proteomic Nirvana. J Proteomics. 2014;107:39–49.

    Article  CAS  PubMed  Google Scholar 

  6. Bjellqvist B, Ek K, Righetti PG, Gianazza E, Gorg A, Westermeier R, Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods. 1982;6:317–39.

    Article  CAS  PubMed  Google Scholar 

  7. Gorg A, Drews O, Luck C, Weiland F, Weiss W. 2-DE with IPGs. Electrophoresis. 2009;30 Suppl 1:S122–32.

    Article  PubMed  Google Scholar 

  8. Sutton CW, Pemberton KS, Cottrell JS, Corbett JM, Wheeler CH, Dunn MJ, Pappin DJ. Identification of myocardial proteins from two-dimensional gels by peptide mass fingerprinting. Electrophoresis. 1995;16:308–16.

    Article  CAS  PubMed  Google Scholar 

  9. Randell P. It’s a MALDI but it’s a goodie: MALDI-TOF mass spectrometry for microbial identification. Thorax. 2014;69:776–8.

    Article  PubMed  Google Scholar 

  10. Anderson NL, Taylor J, Scandora AE, Coulter BP, Anderson NG. The TYCHO system for computer analysis of two-dimensional gel electrophoresis patterns. Clin Chem. 1981;27:1807–20.

    CAS  PubMed  Google Scholar 

  11. Anderson NG, Anderson L. The Human Protein Index. Clin Chem. 1982;28:739–48.

    CAS  PubMed  Google Scholar 

  12. Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis. 2000;21:1054–70.

    Article  CAS  PubMed  Google Scholar 

  13. Rabilloud T. Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis. 2009;30 Suppl 1:S174–80.

    Article  PubMed  Google Scholar 

  14. Yates 3rd JR, Carmack E, Carmack E, Hays L, Link AJ, Eng JK. Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. Methods Mol Biol. 1999;112:553–69.

    CAS  PubMed  Google Scholar 

  15. Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet. 2003;33(Suppl):311–23.

    Article  CAS  PubMed  Google Scholar 

  16. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A. 1999;96:6591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17:994–9.

    Article  CAS  PubMed  Google Scholar 

  18. Agnetti G, Husberg C, Van Eyk JE. Divide and conquer: the application of organelle proteomics to heart failure. Circ Res. 2011;108:512–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18:2071–7.

    Article  CAS  PubMed  Google Scholar 

  20. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guo T, Kouvonen P, Koh CC, Gillet LC, Wolski WE, Rost HL, Rosenberger G, Collins BC, Blum LC, Gillessen S, Joerger M, Jochum W, Aebersold R. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat Med. 2015;21:407–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuhn E, Wu J, Karl J, Liao H, Zolg W, Guild B. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics. 2004;4:1175–86.

    Article  CAS  PubMed  Google Scholar 

  23. Peng Y, Ayaz-Guner S, Yu D, Ge Y. Top-down mass spectrometry of cardiac myofilament proteins in health and disease. Proteomics Clin Appl. 2014;8:554–68.

    Article  CAS  PubMed  Google Scholar 

  24. Oliveira BM, Coorssen JR, Martins-de-Souza D. 2DE: the phoenix of proteomics. J Proteomics. 2014;104:140–50.

    Article  CAS  PubMed  Google Scholar 

  25. Griffiths J. A brief history of mass spectrometry. Anal Chem. 2008;80:5678–83.

    Article  CAS  PubMed  Google Scholar 

  26. Hudson G, Biemann K. Mass spectrometric sequencing of proteins. The structure of subunit I of monellin. Biochem Biophys Res Commun. 1976;71:212–20.

    Article  CAS  PubMed  Google Scholar 

  27. Tabet JC, Rebuffat S. Nobel Prize 2002 for chemistry: mass spectrometry and nuclear magnetic resonance. Med Sci (Paris). 2003;19:865–72.

    Article  Google Scholar 

  28. Makarov A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem. 2000;72:1156–62.

    Article  CAS  PubMed  Google Scholar 

  29. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 2004;101:9528–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biemann K. Laying the groundwork for proteomics: mass spectrometry from 1958 to 1988. J Proteomics. 2014;107:62–70.

    Article  CAS  PubMed  Google Scholar 

  31. Pandey A, Mann M. Proteomics to study genes and genomes. Nature. 2000;405:837–46.

    Article  CAS  PubMed  Google Scholar 

  32. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.

    Article  CAS  PubMed  Google Scholar 

  33. Rabilloud T, Hochstrasser D, Simpson RJ. Is a gene-centric human proteome project the best way for proteomics to serve biology? Proteomics. 2010;10:3067–72.

    Article  CAS  PubMed  Google Scholar 

  34. Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19:1720–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Corbett JM, Wheeler CH, Baker CS, Yacoub MH, Dunn MJ. The human myocardial two-dimensional gel protein database: update 1994. Electrophoresis. 1994;15:1459–65.

    Article  CAS  PubMed  Google Scholar 

  36. Jungblut P, Otto A, Zeindl-Eberhart E, Plessner KP, Knecht M, Regitz-Zagrosek V, Fleck E, Wittmann-Liebold B. Protein composition of the human heart: the construction of a myocardial two-dimensional electrophoresis database. Electrophoresis. 1994;15:685–707.

    Article  CAS  PubMed  Google Scholar 

  37. Thiede B, Otto A, Zimny-Arndt U, Muller EC, Jungblut P. Identification of human myocardial proteins separated by two-dimensional electrophoresis with matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis. 1996;17:588–99.

    Article  CAS  PubMed  Google Scholar 

  38. Corbett JM, Why HJ, Wheeler CH, Richardson PJ, Archard LC, Yacoub MH, Dunn MJ. Cardiac protein abnormalities in dilated cardiomyopathy detected by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis. 1998;19:2031–42.

    Article  CAS  PubMed  Google Scholar 

  39. Agnetti G, Halperin VL, Kirk JA, Chakir K, Guo Y, Lund L, Nicolini F, Gherli T, Guarnieri C, Caldarera CM, Tomaselli GF, Kass DA, Van Eyk JE. Desmin modifications associate with amyloid-like oligomers deposition in heart failure. Cardiovasc Res. 2014;102:24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Del Monte F, Agnetti G. Protein post-translational modifications and misfolding: new concepts in heart failure. Proteomics Clin Appl. 2014;8:534–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arrell DK, Neverova I, Van Eyk JE. Cardiovascular proteomics: evolution and potential. Circ Res. 2001;88:763–73.

    Article  CAS  PubMed  Google Scholar 

  42. Mischak H, Vlahou A, Ioannidis JP. Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience. Clin Biochem. 2013;46:432–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Agnetti PhD, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agnetti, G., Dunn, M.J. (2016). A Historical Perspective on Cardiovascular Proteomics. In: Agnetti, G., Lindsey, M., Foster, D. (eds) Manual of Cardiovascular Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-319-31828-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31828-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31826-4

  • Online ISBN: 978-3-319-31828-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics