Skip to main content

Seasonal Adjustment Based on Structural Time Series Models

  • Chapter
  • First Online:
Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation

Part of the book series: Statistics for Social and Behavioral Sciences ((SSBS))

  • 1809 Accesses

Abstract

The structural model decomposition method starts directly with an observation equation (sometimes called measurement equation) that relates the observed time series to the unobserved components. Simple ARIMA or stochastic trigonometric models are a priori assumed for each unobserved component. Structural Time series Analyzer, Modeler, and Predictor (STAMP) is the main software and includes several types of models for each component. This chapter discusses in detail the basic structural time series model with explicit specifications for each component. It deals also with the estimation of the parameters which is carried out by the method of maximum likelihood where the maximization is done by means of a numerical optimization method. Based on the parameter estimates, the components can be estimated using the observed time series. Model adequacy is generally diagnosed using classical test statistics applied to the standardized one-step ahead prediction errors. An illustrative example of the seasonal adjustment performed using the default option of the STAMP software is shown with the US Unemployment Rate for Males (16 years and over) series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  2. Ansley, C. F., & Kohn, R. (1985). Estimation, filtering and smoothing in state space models with incompletely specified initial conditions. Annals of Statistics, 13, 1286–1316.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowman, K. O., & Shenton, L. R. (1975). Omnibus test contours for departures from normality based on \(\sqrt{b_{1}}\) and b 2. Biometrika, 62, 243–250.

    MathSciNet  MATH  Google Scholar 

  4. Burns, A., & Mitchell, W. (1946). Measuring business cycles. Working paper. New York: NBER.

    Google Scholar 

  5. Commandeur, J. J. F., & Koopman, S. J. (2007). An introduction to state space time series analysis. Oxford: Oxford University Press.

    MATH  Google Scholar 

  6. de Jong, P. (1991). The diffuse Kalman filter. Annals of Statistics, 19, 1073–1083.

    Article  MathSciNet  MATH  Google Scholar 

  7. Doornik, J. A. (2009). An introduction to OxMetrics 6: A software system for data analysis and forecasting. London: Timberlake Consultants Ltd.

    Google Scholar 

  8. Durbin, J., & Koopman, S. J. (2001). Time series analysis by state space methods. Oxford: Oxford University Press.

    MATH  Google Scholar 

  9. Gomez, V. (2001). The use of Butterworth filters for trend and cycle estimation in economic time series. Journal of Business and Economic Statistics, 19, 365–373.

    Article  MathSciNet  Google Scholar 

  10. Harvey, A. C. (1985). Trends and cycles in macroeconomic time series. Journal of Business and Economic Statistics, 3, 216–227.

    Google Scholar 

  11. Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.

    Google Scholar 

  12. Harvey, A. C., Koopman, S. J., & Penzer, J. (1998). Messy time series: A unified approach. In T. B. Fomby & R. Carter Hill (Eds.), Advances in econometrics (Vol. 13, pp. 103–143). New York, NY, USA: JAI Press.

    Google Scholar 

  13. Harvey, A. C., & Trimbur, T. M. (2003). General model-based filters for extracting trends and cycles in economic time series. Review of Economics and Statistics, 85, 244–255.

    Article  Google Scholar 

  14. Jones, R. H. (1980). Maximum likelihood fitting of ARIMA models to time series with missing observations. Technometrics, 22, 389–395.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, Transactions ASMA, Series D, 82, 35–45.

    Article  Google Scholar 

  16. Kim, C. J., & Nelson, C. R. (1999). State space models with regime switching. Cambridge, MA: MIT Press.

    Google Scholar 

  17. Kitagawa, G., & Gersch, W. (1996). Smoothness priors analysis of time series. New York: Springer.

    Book  MATH  Google Scholar 

  18. Koopman, S. J. (1997). Exact initial Kalman filtering and smoothing for non-stationary time series models. Journal of the American Statistical Association, 92, 1630–1638.

    Article  MathSciNet  MATH  Google Scholar 

  19. Koopman, S. J, Harvey, A. C., Doornik, J. A., & Shepard, N. (2000). STAMP 8.2: Structural time series analyser, modeller and predictor. London: Timberlake Consultants Ltd.

    Google Scholar 

  20. Koopman, S. J., & Ooms, M. (2011). Forecasting economic time series using unobserved components time series models. In M. Clements & D. F. Hendry (Eds.), Oxford handbook of economic forecasting. New York: Oxford University Press.

    Google Scholar 

  21. Koopman, S. J., & Shephard, N. (1992). Exact score for time series models in state space form. Biometrika, 79, 823–826.

    Google Scholar 

  22. Koopman, S. J., Shephard, N., & Doornik, J. A. (1999). Statistical algorithms for models in state space form using SsfPack 2.2. Econometrics Journal, 2, 113–166.

    Article  MATH  Google Scholar 

  23. Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 66, 67–72.

    MathSciNet  MATH  Google Scholar 

  24. Nocedal, J., & Wright, S. J. (1999). Numerical optimization. New York: Springer.

    Book  MATH  Google Scholar 

  25. Proietti, T. (2000). Comparing seasonal components for structural time series models. International Journal of Forecasting, 16, 247–260.

    Article  Google Scholar 

  26. Schweppe, F. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, 11, 61–70.

    Article  MathSciNet  MATH  Google Scholar 

  27. Trimbur, T. M. (2006). Properties of higher-order stochastic cycles. Journal of Time Series Analysis, 27, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bee Dagum, E., Bianconcini, S. (2016). Seasonal Adjustment Based on Structural Time Series Models. In: Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation. Statistics for Social and Behavioral Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-31822-6_6

Download citation

Publish with us

Policies and ethics