Skip to main content

Manipulation of Insect Reproductive Systems as a Tool in Pest Control

  • Chapter
  • First Online:
Advances in Insect Control and Resistance Management

Abstract

Insect pests must reproduce in order to exist. In sexual organisms, sperm and ova need to synchronically meet in a specific environment under conditions that may include temperature, time, food, day length, and many others. Mating events can therefore be predicted and as such open for manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford AR, Silk PJ (1983) Effect of pheromone releaser distribution and release rate on the mating success of spruce budworm (Lepidoptera: Tortricidae). J Econ Entomol 76:774–778

    Article  Google Scholar 

  • Anshelevich L, Kehat M, Dunkelblum E et al (1994) Sex pheromone traps for monitoring the European vine moth, Lobesia botrana: effect of dispenser type, pheromone dose, field aging of dispenser, and type of trap on male captures. Phytoparasitica 22:281–290

    Article  Google Scholar 

  • Arbogast RT, Kendra PE, Mankin RW et al (2000) Monitoring insect pests in retail stores by trapping and spatial analysis. J Econ Entomol 93:1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Baumann P (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  CAS  PubMed  Google Scholar 

  • Blagrove MS, Arias-Goeta C, Failloux AB et al (2012) Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. PNAS 109:255–260

    Article  CAS  PubMed  Google Scholar 

  • Bloem KA, Bloem S, Carpenter JE (2005) Impact of moth suppression/eradication programmes using the sterile insect technique or inherited sterility. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Springer, Netherlands, pp 677–700

    Chapter  Google Scholar 

  • Boyer S, Zhang H, Lemperiere GA (2012) Review of control methods and resistance mechanisms in stored-product insects. Bull Entomol Res 102:213–229

    Article  CAS  PubMed  Google Scholar 

  • Brockerhoff EG, Suckling DM (1999) Development of an attracticide against light brown apple moth (Lepidoptera: Tortricidae). J Econ Entomol 92:853–859

    Article  CAS  Google Scholar 

  • Butler SM, Gerry AC, Mullens BA (2007) House fly (Diptera: Muscidae) activity near baits containing (Z)-9-tricosene and efficacy of commercial toxic fly baits on a Southern California dairy. J Econ Entomol 100:1489–1495

    Article  CAS  PubMed  Google Scholar 

  • Byers JA (1993) Simulation and equation models of insect population control by pheromone-baited traps. J Chem Ecol 19:1939–1956

    Article  CAS  PubMed  Google Scholar 

  • Byers JA (2007) Simulation of mating disruption and mass trapping with competitive attraction and camouflage. Environ Entomol 36:1328–1338

    Article  PubMed  Google Scholar 

  • Byers JA, Schlyter F, Birgersson G et al (1990) E–Myrcenol in Ips duplicatus: an aggregation pheromone component new for bark beetles. Experientia 46:1209–1211

    Article  Google Scholar 

  • Cameron EA, Schwalbe CP, Beroza M et al (1974) Disruption of gypsy moth mating with microencapsulated disparlure. Science 183:972–973

    Article  CAS  PubMed  Google Scholar 

  • Cardé RT, Staten RT, Mafra-Neto A (1998) Behavior of pink bollworm males near high-dose, point sources of pheromone in field wind tunnels: insights into mechanisms of mating disruption. Entomol Exp Appl 89:35–46

    Article  Google Scholar 

  • Carpenter JE (1992) Integration of inherited sterility and other pest management strategies for Helicoverpa zea: status and potential. In: International symposium on management of insect pests: nuclear and related molecular and genetic techniques, 19–23 October 1992. IAEA, Vienna, pp 363–370

    Google Scholar 

  • Carpenter JE, Bloem S, Marec F (2005) Inherited sterility in insects. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Springer, Netherlands, pp 115–146

    Chapter  Google Scholar 

  • Clark EL, Karley AJ, Hubbard SF (2010) Insect endosymbionts: manipulators of insect herbivore trophic interactions? Protoplasma 244:25–51

    Article  PubMed  Google Scholar 

  • Cocco A, Lentini A, Serra G (2014) Mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in vineyards using reservoir pheromone dispensers. J Ins Sci 14:1–8

    Google Scholar 

  • Cordaux R, Bouchon D, Greve P (2011) The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends Genet 27:332–341

    Article  CAS  PubMed  Google Scholar 

  • Cork A, Alam SN, Rouf FMA et al (2005) Development of mass trapping technique for control of brinjal shoot and fruit borer, Leucinodes orbonalis (Lepidoptera: Pyralidae). Bull Entomol Res 95:589–596

    Article  CAS  PubMed  Google Scholar 

  • Dedeine F, Vavre F, Fleury F et al (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. PNAS 98:6247–6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denholm I, Rowland MW (1992) Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 37:91–112

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed AM, Suckling DM, Wearing CH et al (2006) Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol 99:1550–1564

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed AM, Suckling DM, Byers JA et al (2009) Potential of “lure and kill” in long-term pest management and eradication of invasive species. J Econ Entomol 102:815–835

    Article  CAS  PubMed  Google Scholar 

  • Enkerlin WR (2005) Impact of fruit fly control programmes using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Springer, Netherlands, pp 651–676

    Chapter  Google Scholar 

  • Enkerlin W, Gutiérrez-Ruelas JM, Cortes AV et al (2005) Area freedom in Mexico from Mediterranean fruit fly (Diptera: Tephritidae): a review of over 30 years of a successful containment program using an integrated area-wide SIT approach. Fla Entomol 98:665–681

    Article  Google Scholar 

  • Evans H, Shapiro M (1997) Viruses. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic, San Diego, pp 17–52

    Chapter  Google Scholar 

  • Floate KD, Kyei-Poku GK, Coghlin PC (2006) Overview and relevance of Wolbachia bacteria in biocontrol research. Biocontrol Sci Technol 16:767–788

    Article  Google Scholar 

  • Flores S, Campos S, Villasenor A (2013) Sterile males of Ceratitis capitata (Diptera: Tephritidae) as disseminators of Beauveria bassiana conidia for IPM strategies. Biocontrol Sci Technol 23:1186–1198

    Article  Google Scholar 

  • Frentiu FD, Robinson J, Young PR (2010) Wolbachia mediated resistance to dengue virus infection and death at the cellular level. PLoS ONE 5, e13398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funes H, Griffo R, Zerba E et al (2011) Mating disruption of the ambrosia beetle Megaplatypus mutatus in poplar and hazelnut plantations using reservoir systems for pheromones. Entomol Exp Appl 139:226–234

    Article  CAS  Google Scholar 

  • Funes H, Zerba E, Gonzalez‐Audino P (2016) Monolithic dispensers for pheromones and their use in mating disruption of the ambrosia beetle Megaplatypus mutatus in poplar plantations. Agric For Entomol 18:52–58

    Article  Google Scholar 

  • Gamble JC, Payne T, Small B (2010) Interviews with New Zealand community stakeholders regarding acceptability of current or potential pest eradication technologies. N Z J Crop Hortic Sci 38:57–68

    Article  Google Scholar 

  • Geden CJ, Szumlas DE, Walker TW (2009) Evaluation of commercial and field-expedient baited traps for house flies, Musca domestica L. (Diptera: Muscidae). J Vector Ecol 34:99–103

    Article  PubMed  Google Scholar 

  • Ghanim M, Czosnek H (2000) Tomato yellow leaf curl Geminivirus (TYLCV-Is) is transmitted among whiteflies (Bemisia tabaci) in a sex-related manner. J Virol 74:4738–4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon D, Zahavi T, Anshelevich L et al (2005) Mating disruption of Lobesia botrana (Lepidoptera: Tortricidae): the effects of pheromone formulations and concentrations. J Econ Entomol 98:135–142

    Article  PubMed  Google Scholar 

  • Gottlieb Y, Zchori-Fein E, Mozes-Daube N et al (2010) The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol 84:9310–9317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield MD (1981) Moth sex pheromones: an evolutionary perspective. Fla Entomol 64:4–17

    Article  Google Scholar 

  • Grenier S, Pintureau B, Heddi A (1998) Successful horizontal transfer of Wolbachia symbionts between Trichogramma wasps. Proc R Soc Lond Ser B 265:1441–1445

    Article  Google Scholar 

  • Gunduz EA, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc R Soc Lond Ser B 276:987–991

    Article  CAS  Google Scholar 

  • Gut LJ, Stelinski LL, Thompson DR et al (2004) Behaviour-modifying chemicals: prospects and constraints in IPM. In: Koul O, Dhaliwal GS, Cuperus GW (eds) Integrated pest management: potential, constraints, and challenges. CABI Publishing, Cambridge, MA, pp 73–121

    Chapter  Google Scholar 

  • Haine ER (2007) Symbiont-mediated protection. Proc R Soci B-Biol Sci 275:353–361

    Article  Google Scholar 

  • Hall DR, Cork A, Phythian SJ et al (2006) Identification of components of male-produced pheromone of coffee white stemborer, Xylotrechus quadripes. J Chem Ecol 32:195–219

    Article  CAS  PubMed  Google Scholar 

  • Haniotakis GE, Koutroubas A, Sachinoglou A (1999) Studies on the response of the leopard moth, Zeuzera pyrina (Lepidoptera: Cossidae) to pheromones in apple orchards. IOBC wprs Bull 22(7):105–114

    Google Scholar 

  • Harari AR, Steinitz H (2013) The evolution of female sex pheromones. Curr Zool 59:569–578

    Article  Google Scholar 

  • Harari AR, Zahavi T, Gordon D et al (2007) Pest management programs in vineyards using male mating disruption. Pest Manag Sci 63:769–775

    Article  CAS  PubMed  Google Scholar 

  • Harari AR, Zahavi T, Thiéry D (2011) Fitness cost of pheromone production in signaling female moths. Evolution 65:1572–1582

    Article  PubMed  Google Scholar 

  • Harari AR, Zahavi T, Steinitz H (2015) Female detection of the synthetic sex pheromone contributes to the efficacy of mating disruption of the European grapevine moth, Lobesia botrana. Pest Manag Sci 71:316–322

    Article  CAS  PubMed  Google Scholar 

  • Haynes KJ, Liebhold AM, Johnson DM (2009) Spatial analysis of harmonic oscillation of gypsy moth outbreak intensity. Oecologia 159:249–256

    Article  PubMed  Google Scholar 

  • Hegazi E, Schlyter F, Khafagi W (2015) Population dynamics and economic losses caused by Zeuzera pyrina, a cryptic wood‐borer moth, in an olive orchard in Egypt. Agric Forest Entomol 17:9–19

    Article  Google Scholar 

  • Hoffmann AA, Montgomery BL, Popovici J et al (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y et al (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. PNAS 107:769–774

    Article  CAS  PubMed  Google Scholar 

  • Huger AM (2005) The Oryctes virus: its detection, identification, and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae). J Invertebr Pathol 89:78–84

    Article  PubMed  Google Scholar 

  • Hurst GDD, Sharpe RG, Broomfield AH et al (1995) Sexually transmitted disease in a promiscuous insect, Adalia bipunctata. Ecol Entomol 20:230–236

    Article  Google Scholar 

  • Ioriatti C, Lucchi A, Bagnoli B (2008) Grape areawide pest management in Italy. In: Koul O, Cuperus G, Elliott N (eds) Areawide pest management: theory and implementation. CAB International, Wallingford, pp 208–225

    Chapter  Google Scholar 

  • Ioriatti C, Anfora G, Tasin M (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Walker T, Neill SLO (2011) Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 12:508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivarsson P, Schlyter F, Birgersson G (1993) Demonstration of de novo pheromone biosynthesis in Ips duplicatus (Coleoptera: Scolytidae): inhibition of ipsdienol and E-myrcenol production by Compactin. Insect Biochem Mol Biol 23:655–662

    Article  CAS  Google Scholar 

  • Johansson BG, Jones TM (2007) The role of chemical communication in mate choice. Biol Rev 82:265–289

    Article  PubMed  Google Scholar 

  • Jones EO, White A, Boots M (2007) Interference and the persistence of vertically transmitted parasites. J Theor Biol 246:10–17

    Article  CAS  PubMed  Google Scholar 

  • Judd GJR, Gardiner MGT, DeLury NC et al (2005) Reduced antennal sensitivity, behavioural response, and attraction of male codling moths, Cydia pomonella, to their pheromone (E, E)-8,10-dodecadien-1-ol following various pre-exposure regimes. Entomol Exp Appl 114:65–78

    Article  CAS  Google Scholar 

  • Karlson P, Lüscher M (1959) ‘Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56

    Article  CAS  PubMed  Google Scholar 

  • Knell RJ, Webberley KM (2004) Sexually transmitted diseases of insects: distribution, evolution, ecology and host behavior. Biol Rev 79:557–581

    Article  PubMed  Google Scholar 

  • Knodel JJ, Petzoldt CH, Hoffmann MP (1995) Pheromone traps effective tools for monitoring Lepidopterous insect pests of sweet corn. Cornell University, Cornell Cooperative Extension, Ithaca

    Google Scholar 

  • Kono M, Koga R, Shimada M et al (2008) Infection dynamics of coexisting beta-and gamma-proteobacteria in the nested endosymbiotic system of mealybugs. Appl Environ Microbiol 74:4175–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontsedalov S, Zchori-Fein E, Chiel E et al (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792

    Article  CAS  PubMed  Google Scholar 

  • Kreutz J, Zimmerman G, Vaupel O (2004) Horizontal transmission of the entomopathogenic fungus Beauveria bassiana among the spruce bark beetle, Ips typographus (Col, Scolytidae) in the laboratory and under field conditions. Biocontrol Sci Technol 14:837–848

    Article  Google Scholar 

  • Landolt PJ, Philips TW (1997) Host plant influences on sex pheromone behaviour of phytophagous insects. Annu Rev Entomol 42:371–391

    Article  CAS  PubMed  Google Scholar 

  • Lentini A, Serra G, Ortu et al (2008) Seasonal abundance and distribution of Planococcus ficus on grape vine in Sardinia. IOBC-wprs Bull 36:267–272

    Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  CAS  PubMed  Google Scholar 

  • Liebhold AM, Halverson JA, Elmes GA (1992) Gypsy moth invasion in North America: a quantitative analysis. J Biogeogr 19:513–520

    Article  Google Scholar 

  • Lipsitch M, Nowak MA, Ebert D et al (1995) The population dynamics of vertically and horizontally transmitted parasites. Proc R Soc B-Biol Sci 260:321–327

    Article  CAS  Google Scholar 

  • Liu CX, Li YH, Gao YL (2010) Cotton bollworm resistance to Bt transgenic cotton: a case analysis. Sci China Life Sci 53:934–941

    Article  CAS  PubMed  Google Scholar 

  • Lively C, Clay K, Wade MJ et al (2005) Competitive co-existence of vertically and horizontally transmitted parasites. Evol Ecol Res 7:1183–1190

    Google Scholar 

  • Llacer E, Santiago-Alvarez C, Jacas JA (2013) Could sterile males be used to vector a microbiological control agent? The case of Rhynchophorus ferrugineus and Beauveria bassiana. Bull Entomol Res 103:241–250

    Article  CAS  PubMed  Google Scholar 

  • Madsen HF, Carty BE (1979) Codling moth (Lepidoptera: Olethreutidae) suppression by male removal with sex pheromone traps in three British Columbia orchards. Can Entomol 111:627–630

    Article  Google Scholar 

  • Mafra Neto A, Habib M (1996) Evidence that mass trapping suppresses pink bollworm populations in cotton fields. Entomol Exp Appl 81:315–323

    Article  Google Scholar 

  • Maniania NK, Ouna E, Ahuya P (2011) Dissemination of entomopathogenic fungi using Busseola fusca male as vector. Biol Cont 58:374–378

    Article  Google Scholar 

  • Marschall KJ, Loane L (1982) The effect of re-release of Oryctes rhinoceros baculovirus in the biological control of rhinoceros beetles in Western Samoa. J Invertebr Pathol 39:267–276

    Article  Google Scholar 

  • McCormick ALC, Karlsson M, Ochoa CFB et al (2012) Mating disruption of Guatemalan potato moth Tecia solanivora by attractive and non-attractive pheromone blends. J Chem Ecol 38:63–70

    Article  PubMed  CAS  Google Scholar 

  • Miller J, Hanson P, Dowell R (1987) The potential of gypsy moth as a pest of fruit and nut crops. Calif Agric 41(11):10–12

    Google Scholar 

  • Miller JR, Gut LJ, de Lame FM et al (2006a) Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (part 1) theory. J Chem Ecol 32:2089–2114

    Article  CAS  PubMed  Google Scholar 

  • Miller JR, Gut LJ, de Lame FM et al (2006b) Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (part 2): case studies. J Chem Ecol 32:2115–2143

    Article  CAS  PubMed  Google Scholar 

  • Miller JR, McGhee PS, Siegert PY et al (2010) General principles of attraction and competitive attraction as revealed by large-cage studies of moths responding to sex pheromone. PNAS 107:22–27

    Article  CAS  PubMed  Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell 139:1268–1278

    Article  PubMed  Google Scholar 

  • Mouton L, Henri H, Boule’treau M (2005) Multiple infections and diversity of cytoplasmic incompatibility in a haplodiploid species. Heredity 94:187–192

    Article  CAS  PubMed  Google Scholar 

  • Myers JH, Savoie A, Randen EV (1998) Eradication and pest management. Annu Rev Entomol 43:471–491

    Article  CAS  PubMed  Google Scholar 

  • Oehlschlager AC, Chinchilla C, Castillo G et al (2002) Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera: Curculionidae). Fla Entomol 85:507–513

    Article  Google Scholar 

  • Oehlschlanger AC, McDonald RS, Chinchilla CM (1995) Influence of a pheromone-based mass-trapping system on the distribution of Rhynchophorus palmarum (Coleoptera: Curculionidae) in oil palm. Environ Entomol 24:1005–1012

    Article  Google Scholar 

  • Oliver KM, Russell JA, Moran NA et al (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100:1803–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Degnan PH, Hunter NA et al (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994

    Article  CAS  PubMed  Google Scholar 

  • Palaniswamy P, Seabrook W (1985) The alteration of calling behaviour by female Choristoneura fumiferana when exposed to synthetic sex pheromone. Entomol Exp Appl 37:13–16

    Article  Google Scholar 

  • Perotti MA, Clarke HK, Turner BD et al (2006) Rickettsia as obligate and mycetomic bacteria. FASEB J 20:2372–2383

    Article  CAS  PubMed  Google Scholar 

  • Petacchi R, Rizzi I, Guidotti D (2003) The lure and kill technique in Bactrocera oleae (Gmel.) control: effectiveness indices and suitability of the technique in area-wide experimental trials. Int J Pest Manag 49:305–311

    Article  Google Scholar 

  • Reddy GV, Tangtrakulwanich K (2014) Potential application of pheromones in monitoring, mating disruption, and control of click beetles (Coleoptera: Elateridae). ISRN Entomol. http://dx.doi.org/10.1155/2014/531061

    Google Scholar 

  • Reinke MD, Miller JR, Gut LJ (2012) Potential of high‐density pheromone‐releasing microtraps for control of codling moth Cydia pomonella and obliquebanded leafroller Choristoneura rosaceana. Physiol Entomol 37:53–59

    Article  Google Scholar 

  • Reyes M, Franck P, Olivares J et al (2009) Worldwide variability of insecticide resistance mechanisms in the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae). Bull Entomol Res 99:359–369

    Article  CAS  PubMed  Google Scholar 

  • Rhule EL, Majerus MEN, Jiggins FM et al (2010) Potential role of the sexually transmitted mite Coccipolipus hippodamiae in controlling populations of the invasive ladybird Harmonia axyridis. Biol Cont 53:243–247

    Article  Google Scholar 

  • Rice RE, Kirsch P (1990) Mating disruption of oriental fruit moth in the United States. In: Ridgeway RL, Silverstein RM, Inscoe MN (eds) Behavior-modifying chemicals for insect management. Marcel Deker, New York, pp 193–211

    Google Scholar 

  • Riddick EW, Schaefer PW (2005) Occurrence, density, and distribution of parasitic fungus Hesperomyces virescens (Laboulbeniales: Laboulbeniaceae) on multicolored Asian Lady Beetle (Coleoptera: Coccinellidae). Ann Entomol Soc Am 98:615–624

    Article  Google Scholar 

  • Roberts EA, Tobin PC, Wu J (2011) Decision support system for the gypsy moth slow-the-spread program. [Cited 11 Nov 4]. Available from: http://www.da.ento.vt.edu/

  • Rogers CD, Armsworth CG, Poppy GM (2014) Conspecific transmission of insecticidal adhesive power through mating in the Mediterranean fruit fly, Ceratitis capitata. J Pest Sci 87:361–369

    Article  Google Scholar 

  • Rosciglione B, Gugerli P (1989) Transmission of grapevine leafroll disease and an associated closterovirus to healthy grapevine by the mealybug Planococcus ficus. Phytoparasitica 17:63

    Google Scholar 

  • Saridaki A, Bourtzis K (2010) Wolbachia: more than just a bug in insects genitals. Curr Opin Microbiol 13:67–72

    Article  CAS  PubMed  Google Scholar 

  • Schlyter F, Birgersson G (1999) Forest beetles. In: Hardie RJ, Minks AK (eds) Pheromones of non-lepidopteran insects associated with agricultural plants. CAB International, Wallingford, pp 113–148

    Google Scholar 

  • Schlyter F, Zhang QH, Liu GT et al (2001) A successful case of pheromone mass trapping of the bark beetle Ips duplicatus in a forest island, analysed by 20-year time-series data. Integr Pest Manag Rev 6:185–196

    Article  Google Scholar 

  • Schofield SW, Justus KA, Mafra‐Neto A et al (2003) Flight of male Cadra cautella along plumes of air and pheromone superimposed on backgrounds of pheromone. Entomol Exp Appl 109:173–181

    Article  CAS  Google Scholar 

  • Schwarz AJ, Zambada A, Orozco DHS et al (1985) Mass production of the Mediterranean fruit fly at Metapa, Mexico. Fla Entomol 68:467–477

    Article  Google Scholar 

  • Schwarz AJ, Liedo JP, Hendrichs JP (1989) Current programme in Mexico. In: Robinson AS, Hooper G (eds) Fruit flies, their biology, natural enemies and control. World crop pests, vol 3B. Elsevier, Amsterdam, pp 375–386

    Google Scholar 

  • Silva IMMS, van Meer MMM, Roskam MM (2000) Biological control potential of Wolbachia-infected versus uninfected wasps: laboratory and greenhouse evaluation of Trichogramma cordubensis and T. deion strains. Biocon Sci Technol 10:223–238

    Article  Google Scholar 

  • Simmons LW (2001) Sperm competition and its evolutionary consequences in the insects. Princeton University Press, Princeton

    Google Scholar 

  • Simmons AM, Rogers CE (1996) Ectoparasitic accugutturid nematodes of adult Lepidoptera. J Nematol 28:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinkins SP, O’Neill SL (2000) Wolbachia as a vehicle to modify insect populations. In: Handler AM, James AA (eds) Insect transgenesis: methods and applications. CRC Press, Boca Raton, pp 271–288

    Chapter  Google Scholar 

  • Soper RS (1963) Massopora levispora, a new species of fungus pathogenic to the cicada, Okanagana rimosa. Can J Bot 41:875–890

    Article  Google Scholar 

  • Soper RS (1981) New cicada pathogens: Massospora cicadettae from Australia and Massospora pahariae from Afghanistan. Mycotaxon 13:50–58

    Google Scholar 

  • Soroker V, Blumberg D, Haberman A et al (2005) Current status of red palm weevil infestation in date palm plantations in Israel. Phytoparasitica 33:97–106

    Article  Google Scholar 

  • Soroker V, Haberman A, Nakache Y et al (2013) History of RPW management in Israel 1999–2012. Palm Pest Mediterranean Conference Nice, 16–18 Jan 2013

    Google Scholar 

  • Steiger S, Stökl J (2014) The role of sexual selection in the evolution of chemical signals in insects. Insects 5:423–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Stelinski LL, Gut LJ (2009) Delayed mating in tortricid leafroller species: simultaneously aging both sexes prior to mating is more detrimental to female reproductive potential than aging either sex alone. Bull Entomol Res 99:245–251

    Article  CAS  PubMed  Google Scholar 

  • Stelinski LL, Gut LJ, Pierzchala AV et al (2004) Field observations quantifying attraction of four tortricid moths to high-dosage pheromone dispensers in untreated and pheromone-treated orchards. Entomol Exp Appl 113:187–196

    Article  Google Scholar 

  • Stelinski LL, Gut LJ, Ketner KC et al (2005) Orientational disruption of codling moth, Cydia pomonella (L.) (Lep, Tortricidae), by concentrated formulations of microencapsulated pheromone in flight tunnel assays. J Appl Entomol 129:481–488

    Article  CAS  Google Scholar 

  • Sternlicht M (1982) Bionomics of Prays citri (Lepidoptera: Yponomeutidae) and their use in a model of control by male mass trapping. Ecol Entomol 7:207–216

    Article  Google Scholar 

  • Stouthamer R (1993) The use of sexual versus asexual wasps in biological control. Entomophaga 38:3–6

    Article  Google Scholar 

  • Suckling DM, Angerilli NPD (1996) Point source distribution affects pheromone spike frequency and communication disruption of Epiphyas postvittana (Lepidoptera: Tortricidae). Environ Entomol 25:101–108

    Article  Google Scholar 

  • Suckling DM, Barrington AM, Chhagan A et al (2007) Eradication of the Australian painted apple moth Teia anartoides in New Zealand: trapping, inherited sterility, and male competitiveness. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Netherlands, pp 603–615

    Chapter  Google Scholar 

  • Svensson M (1996) Sexual selection in moths: the role of chemical communication. Biol Rev 71:113–135

    Article  Google Scholar 

  • Tahir U, Khan UH, Zubair MS (2015) Wolbachia pipientis: a potential candidate for combating and eradicating dengue epidemics in Pakistan. Asian Pac J Trop Med 8:989–998

    Article  PubMed  Google Scholar 

  • Tanne E, Ben-Dov Y, Raccah B (1989) Transmission of the corky-bark disease by the mealybug Planococcus ficus. Phytoparasitica 17:55

    Article  Google Scholar 

  • Teich I, Neumark S, Jacobsen M (1979) Mass trapping of males of Egyptian cotton leafworm, Spodoptera littoralis and large scale synthesis procedure. In: Ritter FJ (ed) Chemical ecology and odour communication in animals. Elsevier North-Holland, Amsterdam, pp 343–350

    Google Scholar 

  • Tesh RB (1981) Vertical transmission of arthropod-borne viruses of vertebrates. In: Mckelvey JJ, Eldridge BF, Maramorosch K (eds) Vectors of disease agents: interactions with plants, animals and man. Praeger, New York, pp 122–137

    Google Scholar 

  • Texeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA virus infections in Drosophila melanogaster. PLoS Biol 6:2753–2763

    Google Scholar 

  • Thaochan N, Ngampongsai A (2015) Effects of autodisseminated Metarhizium guizhouense PSUM02 on mating propensity and mating competitiveness of Bactrocera cucurbitae (Diptera: Tephritidae). Biocontrol Sci Technol 25:629–644

    Article  Google Scholar 

  • Thaxter R (1896) Contribution towards a monograph of the Laboulbeniaceae. I Mem Am Acad Arts Sci 12:187–429

    Google Scholar 

  • Tobin PC, Blackburn LM (eds) (2007) Slow the spread: a national program to manage the gypsy moth. United States Department of Agriculture, Forest Service General Technical Report NRS-6, Newtown Square

    Google Scholar 

  • Tobin PC, Bai BB, Eggen DA et al (2012) The ecology, geopolitics, and economics of managing Lymantria dispar in the United States. Int J Pest Manag 58:195–210

    Article  Google Scholar 

  • Toledo J, Campos SE, Flores S et al (2007) Horizontal transmission of Beauveria bassiana in Anastrepha ludens (Diptera: Tephritidae) under laboratory and field cage conditions. J Econ Entomol 100:291–297

    Article  PubMed  Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Aldine de Gruyter, New York, pp 136–179

    Google Scholar 

  • Tumlinson JH, Guelder RC, Hardee DD et al (1969) Sex pheromones produced by male boll weevil: isolation, identification and synthesis. Science 166:1010–1012

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Terán M, Hofmann HC, Tweddle NE (2005) Impact of screwworm eradication programmes using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Springer, Netherlands, pp 629–650

    Chapter  Google Scholar 

  • Vavre F, Fleury F, Varaldi J (2000) Evidence for female mortality in Wolbachia-mediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences. Evolution 54:191–200

    CAS  PubMed  Google Scholar 

  • Vernon RS, Tóth M (2007) Evaluation of pheromones and a new trap for monitoring Agriotes lineatus and Agriotes obscurus in the Fraser valley of British Columbia. J Chem Ecol 33:345–351

    Article  CAS  PubMed  Google Scholar 

  • Wade MJ, Chang NW (1995) Increased male fertility in Tribolium confusum beetles after infection with the intracellular parasite Wolbachia. Nature 373:72–74

    Article  CAS  PubMed  Google Scholar 

  • Walker T, Johnson PH, Moreira LA et al (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–453

    Article  CAS  PubMed  Google Scholar 

  • Webberley KM, Hurst GDD, Husband RW et al (2004) Host reproduction and a sexually transmitted disease: causes and consequences of Coccipolipus hippodamiae distribution on coccinellid beetles. J Anim Ecol 73:1–10

    Article  Google Scholar 

  • Weir A (1996) A preliminary host-parasite list of British Laboulbeniales (Fungi, Ascomycotina). Entomologist 115:50–58

    Google Scholar 

  • Weissling TJ, Knight AL (1996) Oviposition and calling behaviour of codling moth (Lepidoptera: Tortricidae) in the presence of codlemone. Ann Entomol Soc Am 89:142–147

    Article  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  CAS  PubMed  Google Scholar 

  • Whisler HC (1968) Experimental studies with a new species of Stigmatomyces (Laboulbeniales). Mycology 60:65–75

    Article  CAS  Google Scholar 

  • Witzgall P, Stelinski L, Gut L et al (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522

    Article  CAS  PubMed  Google Scholar 

  • Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100

    Article  CAS  PubMed  Google Scholar 

  • Wright RH (1965) After pesticides—what? Nature 204:121–125

    Article  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Xi Z, Khoo CCH, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328

    Article  CAS  PubMed  Google Scholar 

  • Xia XF, Zheng DD, Zhong HZ et al (2013) DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 8:e68852, DOI:0.1371/journal.pone. 0068852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda K (1999) Auto-infection system for the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Curculionidae) with entomopathogenic fungi, Beauveria bassiana using a modified sex pheromone trap in the field. Appl Entomol Zool 34:501–505

    Google Scholar 

  • Zabalou S, Riegler M, Theodorakopoulou M (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. PNAS 101:15042–15045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabalou S, Apostolaki A, Livadaras I et al (2009) Incompatible insect technique: incompatible males from a Ceratitis capitata genetic sexing strain. Entomol Exp Appl 132:232–240

    Article  Google Scholar 

  • Zelazny B (1976) Transmission of a baculovirus in populations of Oryctes rhinoceros. J Invertebr Pathol 27:221–227

    Article  Google Scholar 

  • Zelazny B, Lolong A, Crawford AM (1990) Introduction and field comparison of baculovirus strains against Oryctes rhinoceros (Coleoptera: Scarabaeidiae) in the Maldives. Environ Entomol 19:1115–1121

    Article  Google Scholar 

  • Zindel R, Gottlieb Y, Aebi A (2011) Arthropod symbioses: a neglected parameter in pest‐and disease‐control programmes. J Appl Ecol 48:864–872

    Article  Google Scholar 

Download references

Acknowledgments

We thank John Byers and Einat Zchori-Fein for their comments on an early draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ally R. Harari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harari, A.R., Sharon, R., Weintraub, P.G. (2016). Manipulation of Insect Reproductive Systems as a Tool in Pest Control. In: Horowitz, A., Ishaaya, I. (eds) Advances in Insect Control and Resistance Management. Springer, Cham. https://doi.org/10.1007/978-3-319-31800-4_6

Download citation

Publish with us

Policies and ethics