Skip to main content

The Evolution of Alternative Control Strategies in a Traditional Crop: Economy and Policy as Drivers of Olive Fly Control

  • Chapter
  • First Online:
Advances in Insect Control and Resistance Management

Abstract

The present essay links historical socioeconomic processes with pest control activities and research and development (R&D) trends in plant protection. We selected the olive orchard agroecosystem, especially in Southern Europe, as a model system. We specifically followed the evolution of olive fly (Bactrocera oleae) control strategies and research activities and linked them with economic processes in the producing countries and with European policy directives. Our analysis includes the period following the Second World War and until recent times. Our main aim was to understand the socioeconomic forces that shape agroecosystem management, especially pest control. Although we only developed the case for the olive fly in Southern Europe, we believe that most human agricultural environments are subjected to similar economic, social, and environmental processes and forces. This historical account shows the complexity involved in the management of the agroecosystem and the effect of global and local factors on plant protection activities and developments, highlighting the need for a holistic approach when agricultural and research policies are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ant T, Koukidou M, Rempoulakis P et al (2012) Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol 10:51. doi:10.1186/1741-7007-10-51

    Article  PubMed  PubMed Central  Google Scholar 

  • Arundel GE (1948) Entire towns abolish flies. Read Dig 52:22

    Google Scholar 

  • Baker RR, Herbert PE, Howse OT et al (1980) Identification and synthesis of the major sex pheromone of the olive fly (Dacus oleae). J Chem Soc Chem Commun 1:52–53

    Article  Google Scholar 

  • Beaufoy G (2001) The environmental impact of olive oil production in the European Union: practical options for improving environmental impact. European Forum on Nature Conservation and Pastoralism and the Asociación para el Análisis y Reforma de la Política Agro‐rural, pp 74

    Google Scholar 

  • Bebber DP, Holmes T, Smith D et al (2014) Economic and physical determinants of the global distribution of crop pests and pathogens. New Phytol 202:901–910

    Article  PubMed  PubMed Central  Google Scholar 

  • Benelli G, Canale A, Bonsignori G et al (2012) Male wing vibration in the mating behavior of the olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). J Insect Behav. doi:10.1007/s10905-012-9325-9

    Google Scholar 

  • Besnard G, Khadari B, Navascue’s M et al (2013) The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B 280:2012–2833

    Article  Google Scholar 

  • Blum M, Lensky IM, Nestel D (2013) Estimation of olive grove canopy temperature from MODIS thermal imagery is more accurate than interpolation from meteorological stations. Agric For Meteorol 176:90–93. doi:10.1016/j.agrformet.2013.03.007

    Article  Google Scholar 

  • Blum M, Lensky IM, Rempoulakis P et al (2015) Modeling insect population fluctuations with satellite land surface temperature. Ecol Model 311:39–47

    Article  Google Scholar 

  • Broumas T, Haniotakis G, (1987) Further studies on the control of the olive fruit fly by Mass-trapping. Paper presented in the proceeding of the 2nd international symposium on fruit flies, Crete, 1986

    Google Scholar 

  • Broumas T, Liaropoulos C, Katsoyiannos P et al. (1983) Control of the olive fruit fly in a pest management trial in olive culture. In: Cavalloro R (ed) Fruit fly of economic importance. Proceeding of CEC/IOBC symposium, Athens, 1982

    Google Scholar 

  • Broumas T, Haniotakis G, Liaropoulos C et al (2002) The efficacy of an improved form of the mass-trapping method for the control of the olive fruit fly, Bactrocera oleae (Gmelin) (Dipt., Tephritidae): pilot-scale feasibility studies. J Appl Entomol 126:217–223

    Article  Google Scholar 

  • Canale A, Carpita A, Conti B et al. (2012) Effect of age on 1,7-dioxaspiro-[5.5]-undecane production in both sexes of olive fruit fly, Bactrocera oleae (Rossi) (Diptera Tephritidae). In: Cristofaro A, Vico del Gargano A (eds) Proceedings of the meeting on the integrated protection of fruit crops. IOBC Bull 74:219–225

    Google Scholar 

  • Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future? Annu Rev Entomol 43:1–16

    Article  CAS  PubMed  Google Scholar 

  • Castrignano A, Boccaccio L, Cohen Y et al (2012) Spatio-temporal population dynamics and area-wide delineation of Bactrocera oleae monitoring zones using multi-variate geostatistics. Precis Agric 13:421–441

    Article  Google Scholar 

  • CORDIS (2015) http://cordis.europa.eu/home_en.html. Accessed Aug 2015

  • Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:151–169

    Article  CAS  PubMed  Google Scholar 

  • Delayen C (2007) The common agricultural policy: a brief introduction. IATP, Minneapolis, http://www.iatp.org/files/451_2_100145_0.pdf. Accessed June 2015

    Google Scholar 

  • Dent D (1991) Insect pest management. CABI, UK

    Google Scholar 

  • Dimou I, Rempoulakis P, Economopoulos AP (2010) Olive fruit fly [Bactrocera (Dacus) oleae (Gmelin) (Diptera: Tephritidae)] adult rearing diet without antibiotic. J Appl Entomol 134:72–79

    Article  Google Scholar 

  • Dyck VA, Hendrichs J, Robinson AS (2005) Sterile insect technique principles and practice in area-wide integrated pest management. Springer, Dordrecht

    Google Scholar 

  • Economopoulos AP (1977a) Gamma-ray sterilization of Dacus oleae (Gmelin). Effect of nitrogen on the competitiveness of irradiated males. Z Angew Entomol 83:86–95

    Article  CAS  Google Scholar 

  • Economopoulos AP (1977b) Controlling Dacus oleae by fluorescent yellow traps. Entomol Exp Appl 22:183–190

    Article  Google Scholar 

  • Economopoulos AP (1989) Use of traps based on color and/or shape. In: Robinson AS, Hooper G (eds) Fruit flies their biology natural enemies and control, world crop pest 3B. Elsevier, Amsterdam, pp 315–327

    Google Scholar 

  • Economopoulos AP (2001) The olive fly, Bactrocera (Dacus) oleae (Gmelin) (Diptera:Tephritidae): its importance and control; previous SIT research and pilot testing. IAEA, Vienna

    Google Scholar 

  • Economopoulos AP, Giannakakis A, Tzanakakis M et al (1971) Reproductive behavior and physiology of the olive fruit fly. 1. Anatomy of the adult rectum and odors emitted by adults. Ann Entomol Soc Am 64:1112–1116

    Article  Google Scholar 

  • Economopoulos AP, Haniotakis GE, Michelakis et al (1982) Population studies on the olive fruit fly, Dacus oleae (Gmelin)(Dipt., Tephritidae) in Western Crete. Z Angew Entomol 93:463–476

    Article  Google Scholar 

  • Economopoulos AP, Raptis A, Stavropoulou-Delivoria A et al (1986) Control of Dacus oleae by yellow sticky trap combined with ammonium acetate slow-release dispenser. Entomol Exp Appl 41:11–16

    Article  Google Scholar 

  • Estes AM, Nestel D, Belcari A et al (2012) A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). J Appl Entomol 136:1–16

    Article  Google Scholar 

  • EUROSTAT (2015) http://ec.europa.eu/eurostat. Accessed Sept 2015

  • FAOSTAT (2015) http://faostat3.fao.org/home/E. Accessed June 2015

  • Franz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tc-1 like family of transposons. Nucleic Acids Res 19:6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopoulou A (1990) The economic development of the Greek olive-oil industry with special reference to Messenia Province. Dissertation, University of Salford

    Google Scholar 

  • Gomez JA, Infante-Amante J, Gonzalez de Molina M et al (2014) Olive cultivation, its impact on soil erosion and its progression and yield impact in Southern Spain in the past as a key to a future of increasing climate uncertainty. Agriculture 4:170–198

    Article  Google Scholar 

  • Guidotti D, Ragaglini G, Petacchi R (2005) Analysis of spatio-temporal Bactrocera oleae (Diptera: Tephritidae) infestation distributions obtained from a large-scale monitoring network and its importance to IPM. Integrated protection of olive crops. IOBC WPRS Bull 28(9):13–18

    Google Scholar 

  • Gutierrez AP, Ponti L, Cossu QA (2009) Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim Chang 95:195–217

    Article  Google Scholar 

  • Haniotakis GE, Galachtiou CG (1972) Metepa sterilization of the olive fruit fly. J Econ Entomol 66:55–61

    Article  Google Scholar 

  • Haniotakis GE, Kozyrakis E, Bonatsos C (1986) Control of the olive fruit fly, Dacus oleae Gmel. (Dipt., Tephritidae) by mass trapping: pilot scale feasibility study. J Appl Entomol 101:343–352

    Article  Google Scholar 

  • Haniotakis G, Kozyrakis M, Fitsakis T et al (1991) An effective mass trapping method for the control of Dacus oleae (Diptera: Tephritidae). J Econ Entomol 84:564–569

    Article  Google Scholar 

  • Hislop EC (1993) Application technology for crop protection: an introduction. In: Matthews GA, Hislop EC (eds) Application technology for crop protection. CABI, UK, pp 3–11

    Google Scholar 

  • IAEA (1997) Control of the Mediterranean fruit fly in the Near East region using the sterile insect technique. STI/PUB/1020. IAEA, Vienna

    Google Scholar 

  • IAEA (2015) https://www.iaea.org/. Accessed Aug2015

  • Index Mundi (2015) www.indexmundi.com/commodities/?commodity=olive-oil&months=360 . Accessed Jul 2015

  • Jackson S (1979) Prologue to the Marshall plan: the origins of the American Commitment for a European Recovery Program. J Am Hist 65(4):1043–1068

    Article  Google Scholar 

  • Jones OT (1987) The use of behaviour modifying chemicals in the integrated pest management of selected fruit species. Paper presented in the proceeding of the 2nd international symposium on Fruit Flies, Crete, 1986

    Google Scholar 

  • Kakani EG, Mathiopoulos KD (2008) Organophosphate resistance mutations in the acetylocholinesterace gene of Tephritidae. J Appl Entomol 132:762–371

    Article  CAS  Google Scholar 

  • Kapatos ET (1989) Integrated pest management systems of Dacus oleae. In: Robinson AS, Hooper G (eds) Fruit flies their biology natural enemies and control. World crop pest 3B. Elsevier, Amsterdam, pp 391–398

    Google Scholar 

  • Kapatos ET, Fletcher BS (1983) Development of a pest management system of Dacus oleae in Corfu by utilizing ecological criteria. In: Cavalloro R. (ed) Fruit flies of economic importance, Proceedings of the CEC/IOBC international symposium. Athens, Nov 1982

    Google Scholar 

  • Kapatos ET, Fletcher BS (1986) Mortality factors and life-budgets for immature stages of the olive fly, Dacus oleae (Gmel.) (Diptera: Tephritidae) in Corfu. J Appl Entomol 102:326–342

    Article  Google Scholar 

  • Katsoyannos BI (1989) Response to shape, size and colour. In: Robinson AS, Hooper G (eds) Fruit flies: their biology, natural enemies and control, vol 3A. Elsevier, Amsterdam, pp 307–324

    Google Scholar 

  • Katsoyannos P (1992) Olive pests and their control in the Near East, FAO Plant Production and Protection paper 115. FAO, Rome

    Google Scholar 

  • Klassen W (2000) Area-wide approaches to insect pest management: history and lessons. In: Tan KH (ed) Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains Malaysia, Penang, pp 21–38

    Google Scholar 

  • Knipling EF (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48:459–462

    Article  Google Scholar 

  • Knipling EF (1959) Sterile-male method of population control. Science 130:902–904

    Article  CAS  PubMed  Google Scholar 

  • Konstantopoulou MA (1997) Artificial rearing and biochemical changes in Bactrocera (Dacus) oleae (Gmel.). ADH allele strains: quality, nutrition. Dissertation, University of Crete

    Google Scholar 

  • Konstantopoulou MA, Economopoulos AP, Manoukas AG (1996) Olive fruit fly (Diptera: Tephritidae) ADH allele selected under artificial rearing produced bigger flies than other ADH alleles. J Econ Entomol 89(6):1387–1391

    Article  Google Scholar 

  • Konstantopoulou MA, Economopoulos AP, Raptopoulo DG (1999) Artificial rearing antimicrobials as selecting factors of Adh alleles in the olive fruit fly, Bactrocera (Dacus) oleae (Gmel.) (Diptera: Tephritidae). J Econ Entomol 92:563–568

    Article  CAS  Google Scholar 

  • Koukidou M, Klinakis A, Reboulakis C et al (2006) Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. Insect Mol Biol 15(1):95–103

    Article  CAS  PubMed  Google Scholar 

  • Kounatidis I, Papadopoulos NT, Mavragani-Tsipidou et al (2008) Effect of elevation on spatio-temporal patterns of olive fly (Bactrocera oleae) populations in northern Greece. J Appl Entomol 132:722–733

    Article  Google Scholar 

  • Krafsur ES (1998) Sterile insect technique for suppressing and eradicating insect population: 55 years and counting. J Agric Entomol 15:303–317

    Google Scholar 

  • Krimbas CB (1963) A contribution to the cytogenetics of Dacus oleae (Gmel.) (Diptera, Trypetidae): the salivary gland and mitotic chromosomes. Caryologia 16:371–375

    Google Scholar 

  • Latiere H (1917) La lutte contre les maladies des plantes en Italie. Ann Serv Epiphyt 4:76–114

    Google Scholar 

  • Lavers A (1993) Aerial application to ground crops. In: Matthews GA, Hislop EC (eds) Application technology for crop protection. CABI, UK, pp 215–240

    Google Scholar 

  • Lefebvre M, Espinosa M, Gomez et al (2012) The influence of the common agricultural policy on agricultural landscapes, JRC Scientific and Policy Reports (Report EUR 25459 EN). EC, Luxembourg, https://ec.europa.eu/jrc/sites/default/files/cap_and_landscape_final_bar_code_end.pdf. Accessed June 2015

    Google Scholar 

  • Levins R, Lewontin R (1985) The dialectical biologist. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Levinson HZ, Levinson AR (1984) Botanical and chemical aspects of the olive tree with regards to fruit acceptance by Dacus oleae (Gmelin) and other frugivorous animals. Z Angew Entomol 98:136–149

    Article  CAS  Google Scholar 

  • Levi-Zada A, Nestel D, Fefer D et al (2012) Analyzing diurnal and age-related pheromone emission of the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) by sequential SPME-GCMS analysis. J Chem Ecol 38:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Lindquist DA (2000) Pest management strategies: area-wide and conventional. In: Tan KH (ed) Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains Malaysia, Penang, pp 13–19

    Google Scholar 

  • Loher W, Zervas G (1979) The mating rhythm of the olive fruit fly, Dacus oleae Gmelin. Z Angew Entomol 88:425–435

    Article  Google Scholar 

  • Mavraganis VG, Papadopoulos NT, Koullousis NA (2010) Extracts of olive fly males (Diptera:Tephritidae) attract virgin females. Entomol Hellenica 19:14–20

    Google Scholar 

  • Mazomenos BE, Haniotakis GE (1981) A multicomponent female sex pheromone of Dacus oleae Gmelin. Isolation and bioassay. J Chem Ecol 7:437–443

    Article  CAS  PubMed  Google Scholar 

  • Mazomenos BE, Haniotakis GE (1985) Male olive fruit fly attraction to synthetic sex pheromone components in laboratory and field tests. J Chem Ecol 11:397–405

    Article  CAS  PubMed  Google Scholar 

  • Mazomenos BE, Pantazi-Mazomenou A, Stefanou D (2002) Attract and kill of the olive fruit fly Bactrocera oleae in Greece as a part of an integrated control system. IOBC WPRS Bull 25:137–146

    Google Scholar 

  • McPhail M (1937) Relation of time of day, temperature and evaporation to attractiveness of fermenting sugar solution to Mexican fruit fly. J Econ Entomol 30:793–799

    Article  CAS  Google Scholar 

  • Metcalf RL (1990) Chemical ecology of Dacinae fruit flies (Diptera: Tephritidae). Ann Entomol Soc Am 83:1017–1030

    Article  CAS  Google Scholar 

  • Monastero R, Delanoue P (1966a) Lutte biologique experimentale contra le mouche de l’ olive (Dacus oleae Gmel.) au moyen d’ Opius concolor Szepl. sciculus Mon. Dans les iles ecolienne Scicile en 1965. Entomophaga 11:411–432

    Article  Google Scholar 

  • Monastero R, Delanoue P (1966b) Un grand experiment di lotta biologica artificiale contro la mosca delle olive (Dacus oleae Gmel.) a mezzo dell’ Opius concolor Sz. sciculus Mon. In Sicilia (Palmero, lugluio-ottobre 1966). Boll Ist Entomol Agr Oss Fitopatol Palmero 6:1–52

    Google Scholar 

  • Moore I (1962) Further investigations of the artificial breeding of the olive fly Dacus oleae Gmel. under aseptic conditions. Entomophaga 7:53–57

    Article  Google Scholar 

  • Muller HJ, Altenberg E (1930) The frequency of translocation produced by X-rays in Drosophila. Genetica 15:283–310

    CAS  Google Scholar 

  • Nardi F, Carapelli A, Dallai R et al (2005) Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol Ecol 14:2729–2738

    Article  CAS  PubMed  Google Scholar 

  • National Statistics Institute of Spain (2015) http://www.ine.es/en/inebmenu/indice_en.htm. Accessed Aug 2015

  • Navarro Llopis V, Vacas S (2014) Bait station devices can improve mass trapping performance for the control of the Mediterranean fruit fly. Pest Manag Sci. doi:10.1002/ps.3864

    Google Scholar 

  • Nestel D (1995) Coffee in Mexico: international market, agricultural landscape and ecology. Ecol Econ 15:165–178

    Article  Google Scholar 

  • Nestel D, Carvalho J, Zaidan S et al (2002) Three years of trials on mass-trapping of the olive fly (Bactrocera oleae) in Israel. Alon Hanotea 56:460–469

    Google Scholar 

  • Nestel D, Carvalho J, Nemny-Lavy E (2004) The spatial dimension in the ecology of insect pests and its relevance to pest management. In: Horowitz AR, Ishaaya I (eds) Insect pests management. Springer-Verlag, Heidelberg, pp 45–63

    Chapter  Google Scholar 

  • Nestel D, Rempoulakis P, Nemni-Lavy E et al. (2012) Pilot olive fly SIT project in Israel: a renewed exploration. In: Abstracts of the 2nd international TEAM meeting, Kolimbari, 3–6 Jul 2012

    Google Scholar 

  • Neuenschwander P (1982) Searching parasitoids of Dacus oleae (Gmel) (Dipt, Tephritidae) in South Africa. J Appl Entomol 94:509–522

    Google Scholar 

  • Neuenschwander P, Michelakis S (1978) The infestation of Dacus oleae (Gmel.) (Diptera, Tephritidae) at harvest time and its influence on yield and quality of olive oil in Crete. Z Angew Entomol 86:420–433

    Article  Google Scholar 

  • Norgaard RB (1976) The economics of improving pesticide use. Annu Rev Entomol 21:45–59

    Article  Google Scholar 

  • OECD (2015) https://data.oecd.org/. Accessed Aug 2015

  • Ordano M, Engelhard I, Rempoulakis P et al (2015) Olive fruit fly (Bactrocera oleae) population dynamics in the eastern Mediterranean: influence of exogenous uncertainty on a monophagous frugivorous insect. PLoS One 10(5):e0127798. doi:10.1371/journal.pone.0127798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orphanidis PS, Danielidou RK, Alexopoulou PS et al (1958) Recherches experimentales surl l’attractivite exercee par certaines substances proteinees sur le Dacus adulte de l’olive. Ann Inst Phytopath Benaki 1(4):199–225

    CAS  Google Scholar 

  • Pavlidi N, Dermauw W, Rombauts S et al (2013) Analysis of the olive fruit fly Bactrocera oleae transcriptome and phylogenetic classification of the major detoxification gene families. PLoS One 8(6):e66533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petacchi R, Guidotti D, Rizzi I (2002) Spatial data analysis and management in integrated pest management in olive growing. Acta Hortic 2:835–839

    Article  Google Scholar 

  • Petacchi R, Marchi S, Federici S et al (2015) Large-scale simulation of temperature-dependent phenology in wintering populations of Bactrocera oleae (Rossi). J Appl Entomol 139:496–509

    Article  Google Scholar 

  • Pontikakos CM, Tsiligiridis TA, Drougka ME (2010) Location –aware system for olive fruit fly spray control. Comput Electron Agric 70:355–368

    Article  Google Scholar 

  • Prokopy RJ, Economopoulos AP (1975) Attraction of wild and lab-cultured Dacus oleae flies to sticky-coated McPhail traps of different colours and odors. Environ Entomol 4:187–192

    Article  Google Scholar 

  • Rempoulakis P, Nestel D (2012) Dispersal ability of marked, irradiated olive fruit flies [Bactrocera oleae (Rossi) (Diptera: Tephritidae)] in arid regions. J Appl Entomol 136:171–180

    Article  Google Scholar 

  • Rempoulakis P, Dimou I, Chrysargyris A et al (2014) Improving olive fruit fly Bactrocera oleae (Diptera: Tephritidae) adult and larval artificial diets, microflora associated with the fly, and evaluation of a transgenic olive fruit fly strain. Int J Trop Insect Sci 34:S114–S122

    Article  Google Scholar 

  • Remund U, Economopoulos AP, Boller EF et al (1981) Fruit fly quality monitoring. The spectral sensitivity of field collected and laboratory reared olive flies Dacus oleae Gmel. (Diptera: Tephritidae). Bull Soc Entomol Suisse 54:221–227

    Google Scholar 

  • Rice R E (2000). Bionomics of the olive fruit fly Bactrocera (Dacus) oleae. In: Stapleton JJ, Summers CG, Teviotdale TL, Goodell PB, Prather TS (eds) Olive notes. University of California Cooperative Extension, Tulare County, pp 1–5

    Google Scholar 

  • Rice RE, Phillips PA, Stewart-Leslie J et al (2003) Olive fruit fly populations measured in Central and Southern California. Calif Agric 57:122–127

    Article  Google Scholar 

  • Robinson AS (2005) Genetic basis of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 95–114

    Google Scholar 

  • S.G.S.H.V.F (2012) Red de seguimiento para el control, alerta y evaluation del los niveles de la población de la mosca del olivo “Red Dacus”. 22 años de historia (1990–2011). Bol Sanid Veg Plagas 38:169–201

    Google Scholar 

  • Scopus (2015) http://www.scopus.com/. Accessed Sept 2015

  • Silvestri F (1913) Viaggio in Africa per cecare parassiti di mosche dei frutti. Boll Lab Zool Gen Agric Portici 8:1164

    Google Scholar 

  • Silvestri F (1914) Viaggio in Eritrea per cercare parassiti delle mosca delle olive. Boll Lab Zool Gen Agric Portici 8:186–226

    Google Scholar 

  • Suckling DM, Kean JM, Stringer LD et al (2014) Eradication of Tephritid fruit fly pest populations: outcomes and prospects. Pest Manag Sci. doi:10.1002/ps.3905

    Google Scholar 

  • Tabic A, Yunis H, Wali MA et al (2011) The use of OLIPE traps as a part of a regional effort towards olive fruit (Bactrocera oleae Gmelin) control. Israel J Plant Sci 59:53–58

    Article  Google Scholar 

  • Tsiligiridis T, Pontiakakos C, Perdikis D (2014) Architectural issues of a location-aware system applied in fruit fly e-monitoring and spraying control. Agris On-line Pap Econ Inform 6:195–207

    Google Scholar 

  • Tsitsipis JA (1982) Mass rearing of the olive fruit fly: recent improvements. In: Sterile insect technique and radiation in insect control. Proceedings of symposium, Neuherberg, June–July 1981. IAEA, Vienna, STI/PUB/595: 425–427

    Google Scholar 

  • Tzanakakis ME (1989) Small-scale rearing: Dacus oleae. In: Robinson A, Hooper G (eds) Fruit flies their biology, natural enemies and control, vol 3B. Elsevier, Amsterdam, pp 105–118

    Google Scholar 

  • Tzanakakis ME (2003) Seasonal development and dormancy of insects and mites feeding on olive: a review. Neth J Zool 52:87–224

    Article  Google Scholar 

  • Tzanakakis ME (2006) Insects and mites feeding on olive: distribution, importance, habits, seasonal development and dormancy. Brill Academic Publishers, Leiden

    Google Scholar 

  • Tzanakakis ME, Katsoyannos B (2003) Entomology of fruit trees and vineyards. Agrotypos S.A, Greece

    Google Scholar 

  • Valerio E (1994) La legislación europea del medio ambiente, 2nd edn. Editorial Colex, Madrid

    Google Scholar 

  • Vargas-Teran M, Hofmann HC, Twedle NE (2005) Impact of screwworm eradication programms using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 629–650

    Google Scholar 

  • World Bank (2015) http://www.worldbank.org/ Accessed Jul 2015

  • Wyss JH (2000) Screwworm eradication in the Americas. Ann N Y Acad Sci 916:186–193

    Article  CAS  PubMed  Google Scholar 

  • Yasin S, Rempoulakis P, Nemny-Lavy E et al (2014) Assessment of lure and kill and mass-trapping methods against the olivefly, Bactrocera oleae (Rossi), in desert-like environments in the Eastern Mediterranean. Crop Prot 57:63–70

    Article  Google Scholar 

  • Yokoyama V (2014) Response of olive fruit fly (Diptera: Tephritidae) to an attract-and-kill trap in greenhouse cage tests. J Insect Sci 14:1

    Article  Google Scholar 

  • Yu S (2008) The toxicology and biochemistry of insecticides. CRC Press, Boca Raton

    Google Scholar 

  • Zadoks LC (2002) Fifty years of crop protection, 1950–2000. Neth J Plant Pathol 72:181–193

    Google Scholar 

  • Zervas GA, Economopoulos AP (1982) Mating frequency in caged populations of wild and artificially reared (normal or g-sterilized) olive fruit flies. Environ Entomol 11:17–20

    Article  Google Scholar 

  • Zouros E, Krimbas CB (1970) Frequency of female digamy in a natural population of the olive fruit fly Dacus oleae as found by using enzyme polymorphism. Entomol Exp Appl 13:1–9

    Article  Google Scholar 

  • Zouros E, Loukas M, Economopoulos AP et al (1982) Selection at the alcohol dehydrogenase locus of the olive fruit fly Dacus oleae under artificial rearing. Heredity 48:169–185

    Article  CAS  Google Scholar 

  • Zouros E, Loukas M, Economopoulos AP et al. (1986) The alcohol dehydrogenase locus (ADH) of Dacus oleae and further evidence for selection under artificial rearing. In: Proceedings of the 2nd international symposium on the fruit flies, Crete, Sept 1986. Elsevier, The Netherlands, pp 341–347

    Google Scholar 

  • Zygouridis NE, Argov Y, Nemny-Lavy E et al (2014) Genetic changes during laboratory domestication of an olive fly SIT strain. J Appl Entomol 138:423–432

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation and thanks to Prof. Emeritus Aristides Economopoulos (University of Crete, Greece) for his valuable suggestions to a previous draft of this manuscript. Thanks are also extended to the Directorate of Rural Economy and Veterinary of Larisa for providing data regarding the olive cultivation in the area of Larisa and the regional project against the olive fly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Nestel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nestel, D., Rempoulakis, P., Yanovski, L., Miranda, M.A., Papadopoulos, N.T. (2016). The Evolution of Alternative Control Strategies in a Traditional Crop: Economy and Policy as Drivers of Olive Fly Control. In: Horowitz, A., Ishaaya, I. (eds) Advances in Insect Control and Resistance Management. Springer, Cham. https://doi.org/10.1007/978-3-319-31800-4_4

Download citation

Publish with us

Policies and ethics