Skip to main content

Measurement Techniques

  • Chapter
  • First Online:
  • 1208 Accesses

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

Abstract

In this chapter, the ways in which cerebral autoregulation can be assessed through measurements of physiological parameters will be presented. The first work in this area dates from the 1940s and the following decades have seen very substantial progress made in the accuracy and repeatability of clinical measurement techniques in a variety of forms, leading towards very rich sources of data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaslid R (2006) Cerebral autoregulation and vasomotor reactivity. Front Neurol Neurosci 21:216–228

    Article  Google Scholar 

  • Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    Article  Google Scholar 

  • Al-Rawi PG, Smielewski P, Kirkpatrick PJ (2001) Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 32(11):2492–2500

    Article  Google Scholar 

  • Birch AA, Neil-Dwyer G, Murrills AJ (2002) The repeatability of cerebral autoregulation assessment using sinusoidal lower body negative pressure. Physiol Meas 23(1):73–83

    Article  Google Scholar 

  • Brown CM, Dütsch M, Hecht MJ, Neundörfer B, Hilz MJ (2003) Assessment of cerebrovascular and cardiovascular responses to lower body negative pressure as a test of cerebral autoregulation. J Neurol Sci 208(1–2):71–78

    Article  Google Scholar 

  • Brown CM, Dütsch M, Ohring S, Neundörfer B, Hilz MJ (2004) Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress. Eur J Appl Physiol 91(2–3):279–286

    Google Scholar 

  • Caicedo A, Naulaers G, Van Huffel S (2013) Preprocessing by means of subspace projections for continuous Cerebral Autoregulation assessment using NIRS. Conf Proc IEEE Eng Med Biol Soc 2013:2032–2035

    Google Scholar 

  • Cavill G, Simpson EJ, Mahajan RP (1998) Factors affecting assessment of cerebral autoregulation using the transient hyperaemic response test. Br J Anaesth 81(3):317–321

    Article  Google Scholar 

  • Claassen JA, Levine BD, Zhang R (2009) Dynamic cerebral autoregulation during repeated squat-stand maneuvers. J Appl Physiol (1985) 106(1):153–160

    Google Scholar 

  • de Boorder MJ, Hendrikse J, van der Grond J (2004) Phase-contrast magnetic resonance imaging measurements of cerebral autoregulation with a breath-hold challenge: a feasibility study. Stroke 35(6):1350–1354

    Article  Google Scholar 

  • de Jong DLK, van Spijker GJ, Hoedemaekers AWE, Meulenbroek OV, Claassen JAHR (2015) Measuring blood pressure oscillations in the MRI. In: Proceedings of the 5th international meeting of the cerebral autoregulation research network. Southampton, UK

    Google Scholar 

  • de Smet D, Vanderhaegen J, Naulaers G, Van Huffel S (2010a) Optimization of the coherence measurement computed by means of the Welch averaged periodogram method for assessment of impaired cerebral autoregulation. Adv Exp Med Biol 662:163–168

    Article  Google Scholar 

  • de Smet D, Jacobs J, Ameye L, Vanderhaegen J, Naulaers G, Lemmers P, van Bel F, Wolf M, Van Huffel S (2010b) The partial coherence method for assessment of impaired cerebral autoregulation using near-infrared spectroscopy: potential and limitations. Adv Exp Med Biol 662:219–224

    Article  Google Scholar 

  • Delpy DT, Cope M (1997) Quantification in tissue near-infrared spectroscopy. Phil Trans R Soc Lond B 352:649–659

    Article  Google Scholar 

  • Duncan A, Meek JH, Clemence M, Elwell CE, Tyszczuk L, Cope M, Delpy D (1995) Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys Med Biol 40:295–304

    Article  Google Scholar 

  • Eames PJ, Potter JF, Panerai RB (2005) Assessment of cerebral autoregulation from ectopic heartbeats. Clin Sci (Lond) 109(1):109–115

    Article  Google Scholar 

  • Edwards AD, Wyatt JS, Richardson C, Delpy DT, Cope M, Reynolds EO (1988) Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet 2(8614):770–771

    Article  Google Scholar 

  • Elting JW, Aries MJ, van der Hoeven JH, Vroomen PC, Maurits NM (2014) Reproducibility and variability of dynamic cerebral autoregulation during passive cyclic leg raising. Med Eng Phys 36(5):585–591

    Article  Google Scholar 

  • Germon TJ, Kane NM, Manara AR, Nelson RJ (1994) Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation. Br J Anaesth 73(4):503–506

    Article  Google Scholar 

  • Giller CA (1991) A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir (Wien) 108(1–2):7–14

    Article  Google Scholar 

  • Giller CA, Bowman G, Dyer H, Mootz L, Krippner W (1993) Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery 32(5):737–741; discussion 741–742

    Google Scholar 

  • Gisolf J, Stok WJ, Oei SI, Immink RV, vanLieshout JJ, Karemaker JM (2002) Dynamic cerebral autoregulation under sinusoidal gravitational loading. J Gravit Physiol. 9(1):P85–P86

    Google Scholar 

  • Horsfield MA, Jara JL, Saeed NP, Panerai RB, Robinson TG (2013) Regional differences in dynamic cerebral autoregulation in the healthy brain assessed by magnetic resonance imaging. PLoS ONE 8(4):e62588

    Article  Google Scholar 

  • Ingvar DH, Lassen NA (1965) Methods for cerebral blood flow measurements in man. Br J Anaesth 37:216–224

    Article  Google Scholar 

  • Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323):1264–1267

    Article  Google Scholar 

  • Kainerstorfer JM, Sassaroli A, Tgavalekos KT, Fantini S (2015) Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy. J Cereb Blood Flow Metab 35(6):959–966

    Article  Google Scholar 

  • Katsogridakis E, Bush G, Fan L, Birch AA, Simpson DM, Allen R, Potter JF, Panerai RB (2012) Random perturbations of arterial blood pressure for the assessment of dynamic cerebral autoregulation. Physiol Meas 33(2):103–116

    Article  Google Scholar 

  • Katsogridakis E, Bush G, Fan L, Birch AA, Simpson DM, Allen R, Potter JF, Panerai RB (2013) Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability. J Cereb Blood Flow Metab 33(4):519–523

    Article  Google Scholar 

  • Kazan SM (2009) DPhil thesis. University of Oxford

    Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 27(4):476–483

    Article  Google Scholar 

  • Kirkpatrick PJ, Smielewski P, Al-Rawi P, Czosnyka M (1998) Resolving extra- and intracranial signal changes during adult near infrared spectroscopy. Neurol Res 20(Suppl 1):S19–S22

    Google Scholar 

  • Kontos HA (1989) Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke 20(1):1–3

    Article  Google Scholar 

  • Lassen NA, Ingvar DH (1961) The blood flow of the cerebral cortex determined by radioactive krypton. Experientia 15(17):42–43

    Article  Google Scholar 

  • Lefthériotis G, Preckel MP, Fizanne L, Victor J, Dupuis JM, Saumet JL (1998) Effect of head-upright tilt on the dynamic of cerebral autoregulation. Clin Physiol 18(1):41–47

    Article  Google Scholar 

  • Liu J, Simpson DM, Allen R (2005) High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation. Physiol Meas 26(5):725–741

    Article  Google Scholar 

  • Liu J, Zhu YS, Hill C, Armstrong K, Tarumi T, Hodics T, Hynan LS, Zhang R (2013) Cerebral autoregulation of blood velocity and volumetric flow during steady-state changes in arterial pressure. Hypertension 62(5):973–979

    Article  Google Scholar 

  • Lorenz M, Sterzer P, Sitzer M (2006) [Evaluation of different protocols for the leg cuff technique for measurement of dynamic cerebral autoregulation]. Ultraschall Med 27(4):368–373. German

    Google Scholar 

  • Lorenz MW, Gonzalez M, Lienerth C, Loesel N, Thoelen N, Sitzer M (2007) Influence of temporal insonation window quality on the assessment of cerebral autoregulation with transcranial Doppler sonography. Ultrasound Med Biol 33(10):1540–1545

    Article  Google Scholar 

  • Lorenz MW, Thoelen N, Loesel N, Lienerth C, Gonzalez M, Humpich M, Roelz W, Dvorak F, Sitzer M (2008) Assessment of cerebral autoregulation with transcranial Doppler sonography in poor bone windows using constant infusion of an ultrasound contrast agent. Ultrasound Med Biol 34(3):345–353

    Article  Google Scholar 

  • Lorenz MW, Loesel N, Thoelen N, Gonzalez M, Lienerth C, Dvorak F, Rölz W, Humpich M, Sitzer M (2009) Effects of poor bone window on the assessment of cerebral autoregulation with transcranial Doppler sonography—a source of systematic bias and strategies to avoid it. J Neurol Sci 283(1–2):49–56

    Article  Google Scholar 

  • Mahajan RP, Cavill G, Simpson EJ (1998) Reliability of the transient hyperemic response test in detecting changes in cerebral autoregulation induced by the graded variations in end-tidal carbon dioxide. Anesth Analg 87(4):843–849

    Google Scholar 

  • Mahony PJ, Panerai RB, Deverson ST, Hayes PD, Evans DH (2000) Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation. Stroke 31(2):476–480

    Article  Google Scholar 

  • Müller HR, Casty M, Loeb J, Haefele M, Boccalini P (1992) [Assessment of cerebral autoregulation using transcranial Doppler sonography under lower body negative pressure]. Schweiz Rundsch Med Prax 81(51):1548–1554. German

    Google Scholar 

  • Numan T, Bain AR, Hoiland RL, Smirl JD, Lewis NC, Ainslie PN (2014) Static autoregulation in humans: a review and reanalysis. Med Eng Phys 36(11):1487–1495

    Article  Google Scholar 

  • Ogoh S, Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH (2011) The effect of phenylephrine on arterial and venous cerebral blood flow in healthy subjects. Clin Physiol Funct Imag 31(6):445–451

    Article  Google Scholar 

  • Okell TW, Chappell MA, Kelly ME, Jezzard P (2013) Cerebral blood flow quantification using vessel-encoded arterial spin labeling. J Cereb Blood Flow Metab 33(11):1716–1724

    Article  Google Scholar 

  • Panerai RB (1998) Assessment of cerebral pressure-autoregulation in humans—a review of measurement methods. Physiol Meas 19:305–338

    Article  Google Scholar 

  • Panerai RB, Dawson SL, Eames PJ, Potter JF (2001) Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure. Am J Physiol Heart Circ Physiol 280(5):H2162–H2174

    Google Scholar 

  • Payne SJ, Mohammad J, Tisdall MM, Tachtsidis I (2011) Effects of arterial blood gas levels on cerebral blood flow and oxygen transport. Biomed Opt Express. 2(4):966–979

    Article  Google Scholar 

  • Petersen NH, Ortega-Gutierrez S, Reccius A, Masurkar A, Huang A, Marshall RS (2014) Comparison of non-invasive and invasive arterial blood pressure measurement for assessment of dynamic cerebral autoregulation. Neurocrit Care 20(1):60–68

    Article  Google Scholar 

  • Poulin MJ, Liang PJ, Robbins PA (1996) Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. J Appl Physiol (1985) 81(3):1084–1095

    Google Scholar 

  • Rosengarten B, Kaps M (2002) Cerebral autoregulation in middle cerebral artery territory precedes that of posterior cerebral artery in human cortex. Cerebrovasc Dis 13(1):21–25

    Article  Google Scholar 

  • Sammons EL, Samani NJ, Smith SM, Rathbone WE, Bentley S, Potter JF, Panerai RB (2007) Influence of noninvasive peripheral arterial blood pressure measurements on assessment of dynamic cerebral autoregulation. J Appl Physiol (1985) 103(1):369–375

    Google Scholar 

  • Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31(7):1672–1678

    Article  Google Scholar 

  • Smielewski P, Czosnyka M, Kirkpatrick P, McEroy H, Rutkowska H, Pickard JD (1996) Assessment of cerebral autoregulation using carotid artery compression. Stroke 27(12):2197–2203

    Article  Google Scholar 

  • Sommerlade L, Schelter B, Timmer J, Reinhard M (2012) Grading of dynamic cerebral autoregulation without blood pressure recordings: a simple Doppler-based method. Ultrasound Med Biol 38(9):1546–1551

    Article  Google Scholar 

  • Sorond FA, Serrador JM, Jones RN, Shaffer ML, Lipsitz LA (2009) The sit-to-stand technique for the measurement of dynamic cerebral autoregulation. Ultrasound Med Biol 35(1):21–29

    Article  Google Scholar 

  • Stewart JM, Medow MS, DelPozzi A, Messer ZR, Terilli C, Schwartz CE (2013) Middle cerebral O2 delivery during the modified Oxford maneuver increases with sodium nitroprusside and decreases during phenylephrine. Am J Physiol Heart Circ Physiol 304(11):H1576–H1583

    Article  Google Scholar 

  • Torizuka K, Hamamoto K, Morita R, Mukai T, Kosaka T, Handa J, Nishitani H (1971) Regional cerebral blood flow measurement with xenon 133 and the scinticamera. Am J Roentgenol Radium Ther Nucl Med. 112(4):691–700

    Article  Google Scholar 

  • Tzeng YC, Ainslie PN, Cooke WH, Peebles KC, Willie CK, MacRae BA, Smirl JD, Horsman HM, Rickards CA (2012) Assessment of cerebral autoregulation: the quandary of quantification. Am J Physiol Heart Circ Physiol 303(6):H658–H671

    Article  Google Scholar 

  • van Beek AH, Olde Rikkert MG, Pasman JW, Hopman MT, Claassen JA (2010) Dynamic cerebral autoregulation in the old using a repeated sit-stand maneuver. Ultrasound Med Biol 36(2):192–201

    Google Scholar 

  • Verbree J, Bronzwaer AS, Ghariq E, Versluis MJ, Daemen MJ, van Buchem MA, Dahan A, van Lieshout JJ, van Osch MJ (2014) Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol (1985) 117(10):1084–1089

    Google Scholar 

  • Wagner BP, Ammann RA, Bachmann DC, Born S, Schibler A (2011) Rapid assessment of cerebral autoregulation by near-infrared spectroscopy and a single dose of phenylephrine. Pediatr Res 69(5 Pt 1):436–441

    Article  Google Scholar 

  • Wagner M, Magerkurth J, Volz S, Jurcoane A, Singer OC, Neumann-Haefelin T, Zanella FE, Deichmann R, Hattingen E (2012) T2′- and PASL-based perfusion mapping at 3 Tesla: influence of oxygen-ventilation on cerebral autoregulation. J Magn Reson Imaging 36(6):1347–1352

    Article  Google Scholar 

  • Warnert EA, Murphy K, Hall JE, Wise RG (2015) Noninvasive assessment of arterial compliance of human cerebral arteries with short inversion time arterial spin labeling. J Cereb Blood Flow Metab 35(3):461–468

    Article  Google Scholar 

  • Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, Ikeda K, Graham J, Lewis NC, Day TA, Ainslie PN (2012) Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol 590(Pt 14):3261–3275

    Article  Google Scholar 

  • Wintermark M, Sesay M, Barbier E, Borbély K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF, Nariai T, Zaharchuk G, Caillé JM, Dousset V, Yonas H (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36(9):e83–e99

    Article  Google Scholar 

  • Wolf ME (2015) Functional TCD: regulation of cerebral hemodynamics–cerebral autoregulation, vasomotor reactivity, and neurovascular coupling. Front Neurol Neurosci 36:40–56

    Article  Google Scholar 

  • Wyatt JS, Cope M, Delpy DT, Richardson CE, Edwards AD, Wray S, Reynolds EO (1990) Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol (1985) 68(3):1086–1091

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Payne .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Payne, S. (2016). Measurement Techniques. In: Cerebral Autoregulation. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31784-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31784-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31783-0

  • Online ISBN: 978-3-319-31784-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics