Skip to main content

Physiological Basis

  • Chapter
  • First Online:
Cerebral Autoregulation

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

  • 1494 Accesses

Abstract

In this chapter, the physiology that governs cerebral autoregulation is presented, beginning with the structure of the cerebral vasculature and how blood flows through it. How this flow is controlled in response to changes in pressure is then presented, before how cerebral blood flow responds to changes in blood gas levels and neurogenic control is examined. It should be noted that the metabolic response will not be examined here in any detail, likewise the role of CSF, since these are both considerable topics in their own right and outside the scope of this focus on cerebral autoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainslie PN, Brassard P (2014) Why is the neural control of cerebral autoregulation so controversial? F1000Prime Rep 6:14

    Google Scholar 

  • Ainslie PN, Celi L, McGrattan K, Peebles K, Ogoh S (2008a) Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2. Brain Res 16(1230):115–124

    Article  Google Scholar 

  • Ainslie PN, Ogoh S, Burgess K, Celi L, McGrattan K, Peebles K, Murrell C, Subedi P, Burgess KR (2008b) Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia. J Appl Physiol (1985) 104(2):490–498

    Article  Google Scholar 

  • Alpers BJ, Berry RG, Paddison RM (1959) Anatomical studies of the circle of Willis in normal brain. AMA Arch Neurol Psychiatry 81(4):409–418

    Article  Google Scholar 

  • Bailey DM, Evans KA, James PE, McEneny J, Young IS, Fall L, Gutowski M, Kewley E, McCord JM, Møller K, Ainslie PN (2009) Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function. J Physiol 587(Pt 1):73–85

    Article  Google Scholar 

  • Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, Lee KH, Liebeskind DS (2011a) Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke 42(3):693–699

    Article  Google Scholar 

  • Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, Lee KH, Liebeskind DS (2011b) UCLA-Samsung stroke collaborators. Collateral flow averts hemorrhagic transformation after endovascular therapy for acute ischemic stroke. Stroke 42(8):2235–2239

    Article  Google Scholar 

  • Brothers RM, Zhang R, Wingo JE, Hubing KA, Crandall CG (2009) Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure. J Appl Physiol (1985) 107(6):1722–1729.

    Article  Google Scholar 

  • Carrera E, Lee LK, Giannopoulos S, Marshall RS (2009) Cerebrovascular reactivity and cerebral autoregulation in normal subjects. J Neurol Sci 285(1–2):191–194

    Article  Google Scholar 

  • Deegan BM, Devine ER, Geraghty MC, Jones E, Ólaighin G, Serrador JM (2010) The relationship between cardiac output and dynamic cerebral autoregulation in humans. J Appl Physiol (1985) 109(5):1424–1431

    Article  Google Scholar 

  • Dineen NE, Brodie FG, Robinson TG, Panerai RB (2010) Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia. J Appl Physiol (1985) 108(3):604–613

    Article  Google Scholar 

  • Gierthmühlen J, Allardt A, Sawade M, Baron R, Wasner G (2011) Dynamic cerebral autoregulation in stroke patients with a central sympathetic deficit. Acta Neurol Scand 123(5):332–338

    Article  Google Scholar 

  • Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60

    Article  Google Scholar 

  • Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985) 100(3):1059–1064

    Article  MathSciNet  Google Scholar 

  • Hamner JW, Tan CO (2014) Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke 45(6):1771–1777

    Article  Google Scholar 

  • Hamner JW, Tan CO, Lee K, Cohen MA, Taylor JA (2010) Sympathetic control of the cerebral vasculature in humans. Stroke 41(1):102–109

    Article  Google Scholar 

  • Hamner JW, Tan CO, Tzeng YC, Taylor JA (2012) Cholinergic control of the cerebral vasculature in humans. J Physiol 590(Pt 24):6343–6352

    Article  Google Scholar 

  • Heckmann JG, Hilz MJ, Hagler H, Mück-Weymann M, Neundörfer B (1999) Transcranial Doppler sonography during acute 80 degrees head-down tilt (HDT) for the assessment of cerebral autoregulation in humans. Neurol Res 21(5):457–462

    Google Scholar 

  • Katsukawa H, Ogawa Y, Aoki K, Yanagida R, Iwasaki K (2012) [Acute mild hypoxia impairment of dynamic cerebral autoregulation assessed by spectral analysis and thigh-cuff deflation]. Nihon Eiseigaku Zasshi 67(4):508–513

    Google Scholar 

  • Kety SS, Schmidt CF (1948) The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27(4):484–492

    Article  Google Scholar 

  • Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39(2):183–238

    Google Scholar 

  • Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol (Oxf) 203(1):47–59

    Article  Google Scholar 

  • Liu J, Koochakpour H, Panerai RB, Katsogridakis E, Wang Z, Simpson DM (2013) Tracking instantaneous pressure-to-flow dynamics of cerebral autoregulation induced by CO2 reactivity. Conf Proc IEEE Eng Med Biol Soc. 2013:3929–3932

    Google Scholar 

  • Low DA, Wingo JE, Keller DM, Davis SL, Cui J, Zhang R, Crandall CG (2009) Dynamic cerebral autoregulation during passive heat stress in humans. Am J Physiol Regul Integr Comp Physiol 296(5):R1598–R1605

    Article  Google Scholar 

  • Maggio P, Salinet AS, Panerai RB, Robinson TG (2013) Does hypercapnia-induced impairment of cerebral autoregulation affect neurovascular coupling? A functional TCD study. J Appl Physiol 15(4):491–497

    Article  Google Scholar 

  • Maggio P, Salinet AS, Robinson TG, Panerai RB (2014) Influence of CO2 on neurovascular coupling: interaction with dynamic cerebral autoregulation and cerebrovascular reactivity. Physiol Rep (1985) 2(3):e00280

    Google Scholar 

  • Meng L, Gelb AW (2015) Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology 122(1):196–205

    Article  Google Scholar 

  • Mohrman DE, Heller LJ (2013) Cardiovascular physiology, 8th edn. McGraw-Hill

    Google Scholar 

  • Murkin JM (2007) Cerebral autoregulation: the role of CO2 in metabolic homeostasis. Semin Cardiothorac Vasc Anesth 11(4):269–273

    Article  Google Scholar 

  • Nishimura N, Iwasaki K, Ogawa Y, Shibata S (2007) Oxygen administration, cerebral blood flow velocity, and dynamic cerebral autoregulation. Aviat Space Environ Med 78(12):1121–1127

    Article  Google Scholar 

  • Nishimura N, Iwasaki K, Ogawa Y, Aoki K (2010) Decreased steady-state cerebral blood flow velocity and altered dynamic cerebral autoregulation during 5-h sustained 15 % O2 hypoxia. J Appl Physiol (1985) 108(5):1154–1161

    Article  Google Scholar 

  • Nogueira RC, Bor-Seng-Shu E, Santos MR, Negrão CE, Teixeira MJ, Panerai RB (2013) Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver. PLoS ONE 8(8):e70821

    Article  Google Scholar 

  • Ogawa Y, Iwasaki K, Aoki K, Shibata S, Kato J, Ogawa S (2007) Central hypervolemia with hemodilution impairs dynamic cerebral autoregulation. Anesth Analg 105(5):1389–1396, table of contents

    Google Scholar 

  • Ogawa Y, Iwasaki K, Aoki K, Gokan D, Hirose N, Kato J, Ogawa S (2010) The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesth Analg 111(5):1279–1284

    Article  Google Scholar 

  • Ogawa Y, Aoki K, Kato J, Iwasaki K (2013) Differential effects of mild central hypovolemia with furosemide administration vs. lower body suction on dynamic cerebral autoregulation. J Appl Physiol (1985) 114(2):211–216

    Article  Google Scholar 

  • Ogoh S, Nakahara H, Ainslie PN, Miyamoto T (2010a) The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia. J Appl Physiol (1985) 108(3):538–543

    Article  Google Scholar 

  • Ogoh S, Sato K, Akimoto T, Oue A, Hirasawa A, Sadamoto T (2010b) Dynamic cerebral autoregulation during and after handgrip exercise in humans. J Appl Physiol (1985) 108(6):1701–1705

    Article  Google Scholar 

  • Panerai RB, Deverson ST, Mahony P, Hayes P, Evans DH (1999) Effects of CO2 on dynamic cerebral autoregulation measurement. Physiol Meas 20(3):265–275

    Article  Google Scholar 

  • Panerai RB, Moody M, Eames PJ, Potter JF (2005) Dynamic cerebral autoregulation during brain activation paradigms. Am J Physiol Heart Circ Physiol 289(3):H1202–H1208

    Article  Google Scholar 

  • Papantchev V, Stoinova V, Aleksandrov A, Todorova-Papantcheva D, Hristov S, Petkov D, Nachev G, Ovtscharoff W (2013) The role of Willis circle variations during unilateral selective cerebral perfusion: a study of 500 circles. Eur J Cardiothorac Surg 44(4):743–753

    Article  Google Scholar 

  • Perry BG, Lucas SJ, Thomas KN, Cochrane DJ, Mündel T (2014) The effect of hypercapnia on static cerebral autoregulation. Physiol Rep 2(6)

    Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P, Gross JF (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67(4):826–834

    Article  Google Scholar 

  • Querido JS, Ainslie PN, Foster GE, Henderson WR, Halliwill JR, Ayas NT, Sheel AW (2013) Dynamic cerebral autoregulation during and following acute hypoxia: role of carbon dioxide. J Appl Physiol 1985 114(9):1183–1190

    Article  Google Scholar 

  • Reivich M (1964) Arterial PCO2 and cerebral hemodynamics. Am J Physiol 206:25–35

    Google Scholar 

  • Riggs HE, Rupp C (1963) Variation in form of circle of Willis. The relation of the variations to collateral circulation: anatomic analysis. Arch Neurol 8:8–14

    Article  Google Scholar 

  • Rosengarten B, Huwendiek O, Kaps M (2001) Neurovascular coupling and cerebral autoregulation can be described in terms of a control system. Ultrasound Med Biol 27(2):189–193

    Article  Google Scholar 

  • Subudhi AW, Panerai RB, Roach RC (2009) Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques. J Appl Physiol 1985 107(4):1165–1171

    Article  Google Scholar 

  • Tan CO, Taylor JA (2014) Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation. Exp Physiol 99(1):3–15

    Article  Google Scholar 

  • Terashvili M, Pratt PF, Gebremedhin D, Narayanan J, Harder DR (2006) Reactive oxygen species cerebral autoregulation in health and disease. Pediatr Clin North Am 53(5):1029–1037, xi

    Google Scholar 

  • Tzeng YC, Lucas SJ, Atkinson G, Willie CK, Ainslie PN (2010) Fundamental relationships between arterial baroreflex sensitivity and dynamic cerebral autoregulation in humans. J Appl Physiol (1985) 108(5):1162–1168

    Article  Google Scholar 

  • White RP, Vallance P, Markus HS (2000) Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans. Clin Sci (Lond) 99(6):555–560

    Article  Google Scholar 

  • Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106(14):1814–1820

    Article  Google Scholar 

  • Zhang R, Wilson TE, Witkowski S, Cui J, Crandall GG, Levine BD (2004) Inhibition of nitric oxide synthase does not alter dynamic cerebral autoregulation in humans. Am J Physiol Heart Circ Physiol 286(3):H863–H869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Payne .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Payne, S. (2016). Physiological Basis. In: Cerebral Autoregulation. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31784-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31784-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31783-0

  • Online ISBN: 978-3-319-31784-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics