Skip to main content

Metrical Projective Geometry and the Concept of Space

  • Chapter
  • First Online:
  • 542 Accesses

Part of the book series: Archimedes ((ARIM,volume 46))

Abstract

In 1871, the German mathematician Felix Klein used the concept of a projective metric to classify geometries into elliptic, hyperbolic, and parabolic. This chapter deals with the question whether metrical projective geometry can provide a classification of hypotheses concerning physical space. Such philosophers as Bertrand Russell argued that projective geometry provides us with a priori knowledge in Kant’s sense, insofar as projective properties are common to all concepts of spaces. However, Russell did not attribute the same status to metrical properties or metrical projective geometry: the former depend on empirical factors; the latter rests upon a definition of distance that must be stipulated arbitrarily. Therefore, he considered Klein’s classification a merely technical result. By contrast, Ernst Cassirer attached great philosophical importance to this result for the clarification of the distinction between the general properties of space and the specific axiomatic structures. Following a line of argument that goes back to Helmholtz, Cassirer used Klein’s classification to generalize the Kantian notion of space to a system of hypotheses, including both Euclidean and non-Euclidean geometries. This generalization offered one of the clearest examples of Cassirer’s interpretation of the notion of the a priori in terms of a range of hypotheses for the use of mathematics in physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For information about Klein’s education and early geometrical works, see Rowe (1989) and Gray (2008, Ch.3) . On the sources of Klein’s classification of geometries , see also Wussing (1969, Ch.3); Birkhoff and Bennett (1988, pp.145–149) and Rowe (1992).

  2. 2.

    The construction described above goes back to Philippe de la Hire and is also found in Poncelet (1822, p.82) . Von Staudt was the first to use it in the definition of the harmonic relation between two pairs of points on a projective line. In order to prove that there is one and only one point that is in such a relation to three given points, von Staudt repeated the construction of the quadrangle on another plane through the line. He proved that the second diagonals of the two quadrangles intersect with the line in the same point. The proof follows from a generalization of Desargues’s theorem about perspective triangles to perspective quadrangles (i.e., distinct triangles or quadrangles, which are projections of the same figure). The theorem states that if the lines through the corresponding vertexes of the figures intersect with the same point, the points of intersection of the corresponding sides lie in the same line, and reciprocally (Staudt 1847, pp.40–43). For a modern presentation of the theorems of Desargues and of von Staudt, see Efimov (1970) .

  3. 3.

    This aspect of von Staudt’s way of proceeding is apparent if one considers later axiomatizations of projective geometry. In this sense, Otto Hölder (1911, p.67, and note) maintained that in order to develop projective geometry in the manner of von Staudt (i.e., without metric foundations), one had to presuppose all axioms of plane linear geometry (connection, order and the axiom of parallel lines ), except the axioms of congruence and the Archimedean axiom . Notice, however, that the first axiomatic treatment of (elementary) geometry goes back to Moritz Pasch (1882) , and he did not provide an axiomatization in the modern sense. It was only Hilbert (1903) who formulated a set of axioms that are sufficient to characterize geometrical objects and relations up to isomorphism. Furthermore, von Staudt presupposed continuity as well. Later presentations of the proof of the fundamental theorem – beginning with Klein’s (1874) – usually adopted an equivalent formulation of Dedekind’s Archimedean continuity (see Darboux 1880; Pasch 1882, pp.125–127; Enriques 1898) . Alternatively, Friedrich Schur (1881, p.253) used Thomae’s (1873, p.11) definition of projectivity in terms of prospectivity to prove the fundamental theorem in a manner which is independent of the Archimedean axiom. On von Staudt’s proof of the fundamental theorem of projective geometry and its development from 1847 to 1900, see Voelke (2008) .

  4. 4.

    On the use of involutions in von Staudt’s calculus of jets, see Maracchia (1993) and Nabonnand (2008).

  5. 5.

    For Cayley’s sources, see Cayley (1889, pp.598–601). On the development of the algebraic theory of invariants, see Wussing (1969, pp.123–130) .

  6. 6.

    It can be hypothesized that Klein elaborated on a remark made by Weierstrass during Klein’s stay in Berlin. Federigo Enriques (1907) reported that Weierstrass discussed the same subject in one of his lectures at the University of Berlin. Even though Enriques did not mention the date, Voelke (2008, p.288) supposes that the discussion might have taken place during the seminar attended by Klein in 1870. To support his conjecture, Voelke (2008, p.258) points out that it was Weierstrass who introduced the notion of a limit point in his proof that every bounded infinite set of real numbers have at least one limit point.

  7. 7.

    For a detailed presentation of this way of proving the fundamental theorem, see also Darboux (1880). This way of proceeding differs from Schur’s (1881), because it presupposes Archimedean continuity: every point of the projective lines under consideration is thought of as a limit point of an infinite series of harmonic elements.

  8. 8.

    Arguably, Klein’s terminology relates to the fact that every linear transformation that maps a line onto itself can be associated with a characteristic quadratic equation. The transformation is elliptic, parabolic or hyperbolic, if the discriminant of this equation is less than, equal to or greater than 0 – namely, if the conic represented by this equation is an ellipse, a parabola or a hyperbola (see Torretti 1978, p.131).

  9. 9.

    The Erlangen Program is often mistaken for Klein’s inaugural address as a newly appointed Professor at the University of Erlangen (see Rowe 1983). Klein’s comparative review of the existing directions of geometrical research circulated as a pamphlet when he gave his inaugural address and became known as Erlangen Program, arguably because, after the second edition of 1893, Klein himself (e.g. in Klein 1921, pp.411–114) presented it as a retrospective guideline for his research (see also Gray 2008, pp.114–117).

  10. 10.

    On the delayed reception of Klein’s Erlangen Program, see Hawkins (1984, pp.451–463).

  11. 11.

    Russell seems to overlook the role of spherical trigonometry in the development of non-Euclidean geometry. On the importance of analytic methods and spherical trigonometry in the works of Bolyai and Lobachevsky , see Reichardt (1985); Rosenfeld (1988, Ch.6).

  12. 12.

    The debate concerned the compatibility of the cosmological model developed by the Dutch astronomer Willem de Sitter with the principles of general relativity. Einstein argued for his own cosmological model by appealing to a principle borrowed from Mach . In a letter to de Sitter dated 24 March 1917, Einstein formulated the principle as follows: “In my opinion, it would be unsatisfactory, if a world without matter were possible. Rather, the g μν -field should be determined by matter and not be able to exist without the latter.” Klein and Hermann Weyl showed that De Sitter’s model provided a counterexample to this principle. See the editorial note on “The Einstein-De Sitter-Weyl-Klein Debate,” in Einstein (1998, pp.351–357).

  13. 13.

    See Corry (1996) ; Avigad (2006). I refer to Avigad and Corry in particular, for a thorough account of how Dedekind’s successive revisions of his theory of ideals shed light on his structuralist approach. According to Avigad (2006, p.168), the progression from Dedekind’s first version of the theory of ideals to his last version represents a steady transition from Kummer’s algorithmic style of reasoning to a style that is markedly more abstract and set-theoretic.

  14. 14.

    As referred to in Chap. 4, such scholars as Dummett (1991) and, more recently, Benis-Sinaceur (2015) draw logicism properly speaking back to Frege , and sharply distinguish the latter’s logicism from Dedekind’s view that “abstract objects are actually created by operations of our mind” (Dummett 1991, p.49). By contrast, Tait (1996) and Ferreirós (1999) reconsidered the logical aspect of Dedekind’s abstraction from all the properties that have to do with a particular representation of mathematical domains (including spatial and temporal intuitions) in order to obtain a categorical characterization of mathematical structures. Cf. also Reck (2003) for a structuralist rather than psychological account of Dedekind’s notions of abstraction and of creation. In this regard, Dedekind’s view has been called logical structuralism. I especially rely on Ferreirós’s broadening of logicism to include parallel versions of it, such as Dedekind’s and Frege’s.

  15. 15.

    Dedekind’s definition of irrational numbers can be considered a decisive step in the clarification of the mathematical notion of continuity. Notice, however, that especially in the introductory part of “Continuity and Irrational Numbers” he used “continuity” in a broader and more intuitive sense. The property of the line he was dealing with is not continuity but connectedness, which intuitively corresponds with the idea of having no breaks. A set is disconnected if it can be divided into two parts such that a point of one part is never a limit point of the other part; it is connected if it cannot be so divided. I am thankful to Jeremy Gray for pointing out to me that Dedekind wished to explain the connected character of the line.

  16. 16.

    As already mentioned, Dedekind’s use of “abstraction” and “creation” has sometimes been misunderstood as psychological (Cf. Dummett 1991, 49). In Chap. 4 and in the present chapter, I refer to more recent interpretations of the same operations as logical ones by Tait (1996) , Ferreirós (1999) , and Reck (2003).

  17. 17.

    Although Dedekind’s conception appears to be naïve when compared to modern set theory, a set-theoretical approach is largely implicit in his logical foundation of arithmetic and became influential especially after Hilbert’s reception of Dedekind (see Gray 2008, pp.148–151).

  18. 18.

    Further developments in Klein’s discussion with Pasch are found in their correspondence, which has been recently made available by Schlimm (2013). In particular, in a letter from October 19, 1891, Pasch fundamentally agreed with Klein’s remarks about the notion of axiom in the concluding part of Klein (1890). However, Pasch distanced himself from Klein’s defense of the role of intuition in mathematics. Although Pasch admitted that figures are commonly used in working on the axioms, he maintained that “the use of figures is merely a facilitation of the work; otherwise, the work would exceed our powers, or at least would progress much too slowly, or would not progress far enough. The consideration must be possible even without the figures, in other words: that which is derived from the figures must already be contained in the axioms, for otherwise the axioms are not complete” (Pasch in Schlimm 2013, p.193) .

  19. 19.

    This classification goes back to Paul du Bois-Reymond’s General Theory of Function (1882). Regarding the fundamental notions of the calculus, du Bois-Reymond distinguished between idealism and empiricism as follows. Idealism is the view that limits exist as a logical presupposition of the calculus, although neither infinite nor infinitesimal quantities are imaginable in the sense of concrete intuition. By contrast, empiricism is the view that knowledge is grounded in immediate perception. Therefore, in the empiricist view, every representation in science must be referred to the objects of perception. In the case of such abstract concepts as the concept of limit, the representation can be obtained indirectly by the use of geometric constructions (see du Bois-Reymond 1882, pp.58–87). Du Bois-Reymond’s approach differed from Klein’s because the former did not propose a synthesis between two opposing views. The aforementioned sections of his work provided clarification on the assumptions of two equally possible views about the foundations of the calculus.

  20. 20.

    Ihmig (1997, pp.306–326) refers to Cassirer’s comparison between the transcendental and the mathematical method to indicate a series of analogies between critical idealism and Klein’s Erlangen Program. Notwithstanding the significance of this comparison for reconsidering Cassirer’s relationship to Klein, it seems to me to be reductive to restrict the consideration to Klein’s general idea of a group-theoretical treatment. My suggestion is to reconsidered the importance of Klein’s projective model throughout his writings on non-Euclidean geometry. Not only did metrical projective geometry offer the first example of a classification of geometries by the use of the theory of invariants, but Klein used this example to support his epistemological views about the relationship between pure and applied mathematics. In this regard, I believe that there are more substantial points of agreement between Cassirer and Klein than the analogies between the Erlangen Program and critical idealism.

References

  • Avigad, Jeremy. 2006. Methodology and metaphysics in the development of Dedekind’s theory of ideals. In The architecture of modern mathematics, ed. José Ferreirós and Jeremy Gray, 159–186. Oxford: Oxford University Press.

    Google Scholar 

  • Beltrami, Eugenio 1869. Teoria fondamentale degli spazi a curvatura costante. Opere Matematiche 1: 406–429. Milano: Hoepli, 1902.

    Google Scholar 

  • Benis-Sinaceur, Houria. 2015. Is Dedekind a logicist? Why does such a question arise? In Functions and generality of logic: Reflections on Dedekind’s and Frege’s logicisms, ed. Houria Benis-Sinaceur, Marco Panza and Gabriel Sandu, 1–57. Heidelberg: Springer.

    Google Scholar 

  • Birkhoff, Garrett, and Mary Katherine Bennett. 1988. Felix Klein and his Erlanger Programm. In History and philosophy of modern mathematics, ed. William Aspray and Philip Kitcher, 144–176. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Boole, George. 1841. Researches on the theory of analytical transformations with a special application to the reduction of the general equation of the second order. Mathematical Journal 2: 64–73.

    Google Scholar 

  • Boole, George. 1843. Exposition of a general theory of linear transformations. Mathematical Journal 3(1–20): 106–119.

    Google Scholar 

  • Cassirer, Ernst. 1907. Das Erkenntnisproblem in der Philosophie und Wissenschaft der neueren Zeit, vol. 2. Berlin: B. Cassirer.

    Google Scholar 

  • Cassirer, Ernst. 1910. Substanzbegriff und Funktionsbegriff: Untersuchungen über die Grundfragen der Erkenntniskritik. Berlin: B. Cassirer. English edition: Cassirer, Ernst. 1923. Substance and Function and Einstein’s Theory of Relativity (trans: Swabey, Marie Collins and Swabey, William Curtis). Chicago: Open Court.

    Google Scholar 

  • Cayley, Arthur. 1859. A sixth memoir upon quantics. In Cayley (1889): 661–592.

    Google Scholar 

  • Cayley, Arthur. 1889. Collected mathematical papers, vol. 2. Cambridge: University Press.

    Google Scholar 

  • Cayley, Arthur. 1896. Collected mathematical papers, vol. 11. Cambridge: University Press.

    Google Scholar 

  • Corry, Leo. 1996. Modern algebra and the rise of mathematical structures. Boston: Birkhäuser.

    Google Scholar 

  • Darboux, Jean Gaston. 1880. Sur le théorème fondamental de la géométrie projective. Mathematische Annalen 17: 55–61.

    Article  Google Scholar 

  • Dedekind, Richard. 1872. Stetigkeit und irrationale Zahlen. Braunschweig: Vieweg. English edition in Dedekind (1901): 1–27.

    Google Scholar 

  • Dedekind, Richard. 1888. Was sind und was sollen die Zahlen? Braunschweig: Vieweg. English edition in Dedekind (1901): 29–115.

    Google Scholar 

  • Dedekind, Richard. 1901. Essays on the theory of numbers. Trans. Wooster Woodruff Beman. Chicago: Open Court.

    Google Scholar 

  • Dedekind, Richard. 1969. Gesammelte mathematische Werke, ed. Robert Fricke, Emmy Noether, and Öystein Ore. Bronx: Chelsea.

    Google Scholar 

  • du Bois-Reymond, Paul. 1882. Die allgemeine Functionstheorie. Vol. 1: Metaphysik und Theorie der mathematischen Grundbegriffe: Grösse, Grenze, Argument und Function. Tübingen: Laupp.

    Google Scholar 

  • Dummett, Michael. 1991. Frege: Philosophy of mathematics. Cambridge: Harvard University Press.

    Google Scholar 

  • Efimov, Nikolaj V. 1970. Höhere Geometrie. Vol. 2: Grundzüge der projektiven Geometrie. Braunschweig: Vieweg.

    Google Scholar 

  • Einstein, Albert. 1998. Collected papers. Vol. 8: The Berlin years: 1914–1918, ed. Robert Schulmann, A.J. Kox, Michel Janssen, and József Illy. Princeton: Princeton University Press.

    Google Scholar 

  • Enriques, Federigo. 1898. Lezioni di geometria proiettiva. Bologna: Zanichelli.

    Google Scholar 

  • Enriques, Federigo. 1907. Prinzipien der Geometrie. Enzyklopädie der Mathematischen Wissenschaften, 3a.1b: 1–129.

    Google Scholar 

  • Ferreirós, José. 1999. Labyrinth of thought: A history of set theory and its role in modern mathematics. Basel: Birkhäuser.

    Book  Google Scholar 

  • Friedman, Michael. 2000. A parting of the ways: Carnap, Cassirer, and Heidegger. Chicago: Open Court.

    Google Scholar 

  • Friedman, Michael. 2001. Dynamics of reason: The 1999 Kant lectures at Stanford University. Stanford: CSLI Publications.

    Google Scholar 

  • Gauss, Carl Friedrich. 1880. Werke. Ed. Königlichen Gesellschaft der Wissenschaften di Göttingen, 4.

    Google Scholar 

  • Gray, Jeremy J. 2008. Plato’s ghost: The modernist transformation of mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Hawkins, Thomas. 1984. The Erlanger Program of Felix Klein: Reflections on its place in the history of mathematics. Historia Mathematica 11: 442–470.

    Article  Google Scholar 

  • Helmholtz, Hermann von. 1870. Über den Ursprung und die Bedeutung der geometrischen Axiome. In Helmholtz (1921): 1–24.

    Google Scholar 

  • Helmholtz, Hermann von. 1921. Schriften zur Erkenntnistheorie, ed. Paul Hertz and Moritz Schlick. Berlin: Springer.

    Google Scholar 

  • Hilbert, David. 1899. Grundlagen der Geometrie. In Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, 1–92. Leipzig: Teubner.

    Google Scholar 

  • Hilbert, David. 1903. Grundlagen der Geometrie. 2nd revised ed. Leipzig: Teubner.

    Google Scholar 

  • Hölder, Otto. 1901. Die Axiome der Quantität und die Lehre vom Mass. Berichten der mathematisch-physischen Classe der Königl. Sächs. Gesellschaft der Wissenschaften zu Leipzig 53: 1–63.

    Google Scholar 

  • Hölder, Otto. 1908. Die Zahlenskala auf der projektiven Geraden und die independente Geometrie dieser Geraden. Mathematische Annalen 65: 161–260.

    Article  Google Scholar 

  • Hölder, Otto. 1911. Streckenrechnung und projektive Geometrie. Berichte über die Verhandlungen der Königl. Sächs. Gesellschaft der Wissenschaften zu Leipzig 63: 65–183.

    Google Scholar 

  • Ihmig, Karl Norbert. 1997. Cassirers Invariantentheorie der Erfahrung und seine Rezeption des “Erlanger Programms”. Hamburg: Meiner.

    Google Scholar 

  • Kant, Immanuel. 1783. Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können. Riga: Hartknoch. Repr. In Akademie-Ausgabe, 4: 253–384.

    Google Scholar 

  • Kant, Immanuel. 1787. Critik der reinen Vernunft, 2nd ed. Riga: Hartknoch. Repr. in Akademie-Ausgabe, 3.

    Google Scholar 

  • Klein, Felix. 1871a. Notiz, betreffend den Zusammenhang der Liniengeometrie mit der Mechanik starrer Körper. Mathematische Annalen 4: 403–415.

    Article  Google Scholar 

  • Klein, Felix. 1871b. Über die sogenannte Nicht-Euklidische Geometrie. Mathematische Annalen 4: 573–625.

    Article  Google Scholar 

  • Klein, Felix. 1872. Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Deichert.

    Google Scholar 

  • Klein, Felix. 1873. Über die sogenannte Nicht-Euklidische Geometrie, 2 Teil. Mathematische Annalen 6: 112–145.

    Article  Google Scholar 

  • Klein, Felix. 1874. Nachtrag zu dem zweiten Aufsatz über Nicht-Euklidische Geometrie. Mathematische Annalen 7: 531–537.

    Article  Google Scholar 

  • Klein, Felix. 1889–1890. Vorlesungen über Nicht-Euklidische Geometrie, elaborated by Fr. Schilling. Göttingen 1893.

    Google Scholar 

  • Klein, Felix. 1890. Zur Nicht-Euklidischen Geometrie. Mathematische Annalen 37: 544–572.

    Article  Google Scholar 

  • Klein, Felix. 1893. Vergleichende Betrachtungen über neuere geometrische Forschungen. Mathematische Annalen 43: 63–100.

    Article  Google Scholar 

  • Klein, Felix. 1894. Lectures on mathematics at Northwestern University. Evanston, reported by A. Ziwet. New York: Macmillian.

    Google Scholar 

  • Klein, Felix. 1895. Die Arithmetisierung der Mathematik. Nachrichten von der Königl. Gesellschaft der Wissenschaften zu Göttingen. Geschäftliche Mitteilungen: 82–91.

    Google Scholar 

  • Klein, Felix. 1898. Gutachten, betreffend den dritten Band der Theorie der Transformationsgruppen von S. Lie anlässlich der ersten Vertheilung des Lobatschewsky-Preises. Mathematische Annalen 50: 583–600.

    Article  Google Scholar 

  • Klein, Felix. 1911. Über die geometrischen Grundlagen der Lorentzgruppe. Physikalische Zeitschrift 12: 17–27.

    Google Scholar 

  • Klein, Felix. 1921. Gesammelte mathematische Abhandlungen, vol. 1, ed. Robert Fricke and Alexander Ostrowski. Berlin: Springer.

    Google Scholar 

  • Klein, Felix. 1928. Vorlesungen über nicht-euklidische Geometrie. 2nd ed, ed. Walter Rosemann. Berlin: Springer.

    Google Scholar 

  • Lagrange, Joseph-Louis. 1770–1771. Réflexions sur la résolution algébrique des équations. Nouveaux mémoires de l’Académie royale des sciences et belles-lettres de Berlin, années 1770 et 1771. Repr. in Oeuvres, 3: 203–421. Paris: Gauthier-Villars, 1869.

    Google Scholar 

  • Leibniz, Gottfried Wilhelm. 1859. Leibnizens mathematische Schriften. Vol. 4: Briefwechsel zwischen Leibniz, Wallis, Varignon, Guido Grandi, Zendrini, Hermann und Freiherrn von Tschirnhaus, ed. Carl Immanuel Gerhardt. Halle: Schmidt.

    Google Scholar 

  • Lie, Sophus. 1893. Theorie der Transformationsgruppen. Vol. 3. Leipzig: Teubner.

    Google Scholar 

  • Maracchia, Silvio. 1993. Dalla geometria euclidea alla geometria iperbolica: Il modello di Klein. Napoli: Liguori.

    Google Scholar 

  • Möbius, August Ferdinand. 1827. Der barycentrische Calcul: Ein neues Hülfsmittel zur analytischen Behandlung der Geometrie. Leipzig: Barth.

    Google Scholar 

  • Nabonnand, Philippe. 2008. La théorie des Würfe de von Staudt – Une irruption de l’algèbre dans la géométrie pure. Archive for History of Exact Sciences 62: 201–242.

    Article  Google Scholar 

  • Norton, John. 1999. Geometries in collision: Einstein, Klein, and Riemann. In The symbolic universe: Geometry and physics 1890–1930, ed. Jeremy Gray, 128–144. Oxford: Oxford University Press.

    Google Scholar 

  • Pasch, Moritz. 1882. Vorlesungen über neuere Geometrie. Leipzig: Teubner.

    Google Scholar 

  • Plücker, Julius. 1869. Neue Geometrie des Raumes, gegründet auf die Betrachtung der geraden Linie als Raumelement. Leipzig: Teubner.

    Google Scholar 

  • Poncelet, Jean-Victor. 1822. Traité des propriétés projectives des figures: Ouvrage utile à ceux qui s’occupent des applications de la géométrie descriptive et d’opérations géométriques sur le terrain. Paris: Bachelier.

    Google Scholar 

  • Poncelet, Jean-Victor. 1864. Applications d’analyse et de géométrie qui ont servi de principal fondement au Traité des propriétés projectives des figures. Paris: Gauthier-Villars.

    Google Scholar 

  • Poncelet, Jean-Victor. 1865. Traité des propriétés projectives des figures, vol. 1, 2nd ed. Paris: Gauthier-Villars.

    Google Scholar 

  • Reck, Erich. 2003. Dedekind’s structuralism: An interpretation and partial defense. Synthese 137: 369–419.

    Article  Google Scholar 

  • Reichardt, Hans. 1985. Gauß und die Anfänge der nicht-euklidischen Geometrie, 2nd ed. Leipzig: Teubner.

    Book  Google Scholar 

  • Rosenfeld, Boris A. 1988. A history of non-Euclidean geometry: Evolution of the concept of a geometric space. Trans. Abe Shenitzer. New York: Springer.

    Google Scholar 

  • Rowe, David E. 1983. A forgotten chapter in the history of Felix Klein’s “Erlanger Programm”. Historia Mathematica 10: 448–454.

    Google Scholar 

  • Rowe, David E. 1989. The early geometrical works of Sophus Lie and Felix Klein. In The history of modern mathematics. Vol. 1: Ideas and their reception, ed. David E. Rowe and John McCleary, 209–273. Boston: Academic.

    Google Scholar 

  • Rowe, David E. 1992. Klein, Lie, and the Erlanger Program. In 1830–1930: A century of geometry, epistemology, history and mathematics, ed. Luciano Boi, Dominique Flament, and Jean-Michel Salanskis, 45–54. Berlin: Springer.

    Google Scholar 

  • Russell, Bertrand. 1897. An essay on the foundations of geometry. Cambridge: University Press.

    Google Scholar 

  • Schlimm, Dirk. 2013. The correspondence between Moritz Pasch and Felix Klein. Historia Mathematica 40: 183–202.

    Article  Google Scholar 

  • Schur, Friedrich. 1881. Über den Fundamentalsatz der projectivischen Geometrie. Mathematische Annalen 18: 252–254.

    Article  Google Scholar 

  • von Staudt, Karl Georg Christian. 1847. Geometrie der Lage. Nürnberg: Korn.

    Google Scholar 

  • von Staudt, Karl Georg Christian. 1856–1860. Beiträge zur Geometrie der Lage. 3 Vols. Nürnberg: Korn.

    Google Scholar 

  • Sylvester, James Joseph. 1851. On the general theory of associated algebraical forms. Mathematic Journal 6: 289–293.

    Google Scholar 

  • Tait, William W. 1996. Frege versus Cantor and Dedekind: On the concept of number. In Frege: Importance and legacy, ed. Matthias Schirn, 70–113. Berlin: De Gruyter.

    Google Scholar 

  • Thomae, Johannes. 1873. Ebene geometrische Gebilde erster und zweiter Ordnung vom Standpunkte der Geometrie der Lage betrachtet. Halle: Nebert.

    Google Scholar 

  • Torretti, Roberto. 1978. Philosophy of geometry from Riemann to Poincaré. Dordrecht: Reidel.

    Book  Google Scholar 

  • Voelke, Jean Daniel. 2008. Le théorème fondamental de la géométrie projective: évolution de sa preuve entre 1847 et 1900. Archive for History and Exact Sciences 62: 243–296.

    Article  Google Scholar 

  • Wussing, Hans. 1969. Die Genesis des abstrakten Gruppenbegriffes: Ein Beitrag zur Entstehungsgeschichte der abstrakten Gruppentheorie. Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Yaglom, Isaak M. 1988. Felix Klein and Sophus Lie: Evolution of the idea of symmetry in the nineteenth century. Trans. Sergei Sossinsky. Boston: Birkhäuser.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Biagioli, F. (2016). Metrical Projective Geometry and the Concept of Space. In: Space, Number, and Geometry from Helmholtz to Cassirer. Archimedes, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-31779-3_5

Download citation

Publish with us

Policies and ethics