Skip to main content

Optical Model Calculation of the Total Penning Ionization Cross Section for Ne(3P1) by O2

  • Conference paper
  • First Online:
  • 569 Accesses

Abstract

Quantum mechanical calculation of the total Penning ionization cross section for Ne(3P1) by O2 has been made. The interaction potentials of Ne(3P2,0) by O2 obtained from the literature are employed. The imaginary part of the optical potential at long range is expressed by a dipole–dipole autoionization width and at a small interatomic distance by an electron-exchange autoionization width. Γex is individually evaluated in the present work by fitting the calculated to σM at the mean collisional energy corresponding to room temperature. The calculation and comparison show that good agreement between the calculated results and experimental results has been obtained both in the absolute cross sections and in the energy dependence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hotop H, Niehaus A (1969) Reactions of excited atoms and molecules with atoms and molecules. Z Physik 228:68–88

    Article  CAS  Google Scholar 

  2. Siska PE (1993) Molecular beam studies of Penning ionization. Rev Mod Phys 65:337–412

    Article  CAS  Google Scholar 

  3. Ukai M, Hatano Y (1991) Deexcitation of excited rare gas atoms in metastable and resonance states as studied by the pulse radiolysis method. In: Crompton RW, Hayashi M, Boyd DE, Makabe T (eds) Gaseous electronics and its applications. KTR Scientific Publishers, Tokyo

    Google Scholar 

  4. Brunetti B, Vecchiocattivi F (1993) Autoionization dynamics of collisional complexes. In: Ng CY, Baer T, Powis I (eds) Cluster ions. Wiley, New York

    Google Scholar 

  5. Hatano Y (1991) Pulse radiolysis in the gas phase. In: Tabata Y (ed) Pulse radiolysis. CRC Press, Boca Raton

    Google Scholar 

  6. Khadka DB, Fukuchi Y, Kitajima M, Hidaka K, Kouchi N, Hatano Y, Ukai M (1997) Deexcitation of Ne(3P1) and Ne(3P2) in collisions with Ar, Kr, and Xe. J Chem Phys 107:2386–2394

    Article  CAS  Google Scholar 

  7. Fukuzawa H, Murata M, Kiyoto N, Mukai T, Fukuchi Y, Khadka DB, Odagiri T, Kameta K, Kouchi N, Hatano Y (2003) Collisional deexcitation of the excited rare gas atoms in resonant states: the Watanabe-Katsuura theory revisited. J Chem Phys 118:70–74

    Article  CAS  Google Scholar 

  8. Miller WH (1970) Theory of Penning ionization. J Chem Phys 52:3563–3572

    Article  CAS  Google Scholar 

  9. Micha DA, Tang SY, Muschlitz EE (1971) Semi-empirical model for Penning and associative ionization velocity dependence and branching ratios for Ne(3P2,0) collisions with Ar, Kr and Xe. Chem Phys Lett 8:587–591

    Article  CAS  Google Scholar 

  10. Olson RE (1972) Semi-empirical calculations of the He*(23S and 21S) + Ar ionization total cross sections. Phys Rev A 6:1031–1036

    Article  CAS  Google Scholar 

  11. Vojtik J, Paidarova I (1982) Diatomics-in-molecules calculation of the potential energy surfaces relevant to Penning ionization in the He(23S)-H2 system. Chem Phys Lett 91:281–285

    Article  Google Scholar 

  12. Vojtik J, Paidarova I (1984) A semi-empirical DIM calculation of the resonant energy and autoionization width of the He(23S)-H2. Chem Phys Lett 103:305–309

    Article  CAS  Google Scholar 

  13. Gregor RW, Siska PE (1981) Differential elastic scattering of Ne*(3s 3P2,0) by Ar, Kr and Xe: Optical potentials and their orbital interpretation. J Chem Phys 74:1078–1092

    Article  CAS  Google Scholar 

  14. Baudon J, Feron P, Miniatura C, Perales F, Reinhardt J, Robert J, Haberland H, Brunetti B, Vecchiocattivi F (1991) Optical potentials for Ne*(3P2,0) –Ar, N2 interactions. J Chem Phys 95:1801–1807

    Article  CAS  Google Scholar 

  15. Watanabe T, Katsuura K (1967) Ionization of atoms by collision with excited atoms: a formula without the rotating-atom approximation. J Chem Phys 47:800–811

    Article  CAS  Google Scholar 

  16. Shaw DA, Holland DMP, MacDonald MA, Hopkirk A, Hayes MA, McSweeney SM (1992) A study of the absolute photoabsorption cross section and the photoionization quantum efficiency of nitrogen from the ionization threshold to 485 Å. Chem Phys 166:379–391

    Article  CAS  Google Scholar 

  17. Chan WF, Cooper G, Brion CE (1992) Absolute optical oscillator strengths (11–20 eV) and transition moments for the photoabsorption of molecular hydrogen in the Lyman and Werner bands. Chem Phys 168:375–388

    Article  CAS  Google Scholar 

  18. Hitchcock AP, Brion CE, van Der Wiel MJ (1980) Absolute oscillator strengths for valence-shell ionic photofragmentation of N2O and CO2 (8–75 eV). Chem Phys 45:461–478

    Article  CAS  Google Scholar 

  19. Holland DMP, Shaw DA, McSweeney SM, MacDonald MA, Hopkirk A, Hayes MA (1993) A study of the absolute photoabsorption, photoionization and photodissociation cross-sections and the photoionization quantum efficiency of oxygen from the ionization threshold to 490 Å. Chem Phys 173:315–331

    Article  CAS  Google Scholar 

  20. Au JW, Cooper G, Burton GR, Olney TN, Brion CE (1993) The valence shell photoabsorption of the linear alkanes, CnH2n+2 (n = 1–8): absolute oscillator strengths (7–220 eV). Chem Phys 173:209–239

    Article  CAS  Google Scholar 

  21. Radzig AA, Smirnov BM (1985) Reference data on atoms, molecules, and ions. Springer, Berlin

    Book  Google Scholar 

  22. Morishima Y, Yoshida H, Ukai M, Shinsaka K, Kouchi N, Hatano Y (1992) Deexcitation of He(21P) in collisions with diatomic molecules. J Chem Phys 97:3180–3186

    Article  CAS  Google Scholar 

  23. Morishima Y, Ukai M, Kouchi N, Hatano Y (1992) Optical model calculation of the total Penning ionization cross sections for He(21P)–Ar, Kr and Xe. J Chem Phys 96:8187–8193

    Article  CAS  Google Scholar 

  24. Johnson BR (1973) The multichannel log-derivative method for scattering calculations. J Comput Phys 13:445–449

    Article  Google Scholar 

  25. Kerstel ER, Janssens MFM, van Leeuwen KAH, Beijerinck HCW (1988) Intermolecular potentials for the metastable Ne*-rare gas and Ne*-molecule systems. Chem Phys 119:325–341

    Article  CAS  Google Scholar 

  26. Ukai M, Yoshida H, Morishima Y, Nakazawa H, Shinsaka K, Hatano Y (1989) Deexcitation of He(21P) in collisions with rare gas atoms. J Chem Phys 90:4865–4874

    Article  CAS  Google Scholar 

  27. Koizumi K, Ukai M, Tanaka Y, Shinsaka K, Hatano Y (1986) Temperature dependence of the deexcitation of He(23S) by atoms and molecules as studied by pulse radiolysis method. J Chem Phys 85:1931–1937

    Article  CAS  Google Scholar 

  28. Yokoyama A, Hatano Y (1981) Deexcitation rate constants of Ne (3P2, 3P1 and 3P0) by atoms and molecules as studied by the pulse radiolysis method. Chem Phys 63:59–65

    Article  CAS  Google Scholar 

  29. Yoshida H, Kitajima M, Kawamura H, Hidaka K, Ukai M, Kouchi N, Hatano Y (1993) Deexcitation cross sections of Ne(3P2, 3P1), and Ne(3P0) by molecules containing group IV elements. J Chem Phys 98:6190–6195

    Article  CAS  Google Scholar 

  30. Khadka DB Deexcitation cross sections of Ne(3P1) by O2 (Unpublished data)

    Google Scholar 

Download references

Acknowledgments

The author would like to express his sincere gratitude to Dr. Yoshihiko Hatano of Tokyo Institute of Technology, Tokyo, Japan for providing the research facilities for conducting the research works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deba Bahadur Khadka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Khadka, D.B. (2016). Optical Model Calculation of the Total Penning Ionization Cross Section for Ne(3P1) by O2 . In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Crystallizing Ideas – The Role of Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-31759-5_13

Download citation

Publish with us

Policies and ethics