Skip to main content

Novel γ-Butyrolactone Derivatives as Muscarinic Receptor Antagonists: Pharmacophore Elucidation and Docking Analyses

  • Conference paper
  • First Online:
Crystallizing Ideas – The Role of Chemistry

Abstract

Our efforts in design and development of novel muscarinic acetylcholine receptor (mAChR) antagonists led to the development of a novel series of γ-butyrolactone derivatives. We were interested in understanding the contributions of the structural features of these molecules for receptor affinity and subtype selectivity, if any, to guide further design of second-generation analogs with tailor-made potency and selectivity. Initially, 3D pharmacophore hypotheses were developed using high affinity M1 and M2 antagonist ligands. The ‘extended’ and ‘compact’ hypotheses were then used for the retrospective virtual screening of the γ-butyrolactone derivatives. Further, these molecules were then docked into the M2 receptor orthosteric binding site. The results obtained from the pharmacophore- and structure-based investigations were in agreement with the structure–activity relationship (SAR) observations. The key findings of these studies will be helpful for further design and development of subtype-selective muscarinic receptor ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karnik SS, Gogonea C, Patil S, Saad Y, Takezako T (2003) Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 14:431–437

    Article  CAS  Google Scholar 

  2. Scarselli M, Li B, Kim SK, Wess J (2007) Multiple residues in the second extracellular loops are critical for M3 muscarinic acetylcholine receptor activation. J Biol Chem 282:7385–7396

    Article  CAS  Google Scholar 

  3. Hosey MM (1992) Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receptors. FASEB J 6:845–852

    CAS  Google Scholar 

  4. Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  CAS  Google Scholar 

  5. Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJM, Bymaster FP (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci 105:10978–10983

    Article  CAS  Google Scholar 

  6. Felder CC, Bymaster FP, Ward J, DeLapp N (2000) Therapeutic opportunities for muscarinic receptors in central nervous system. J Med Chem 43:4333–4353

    Article  CAS  Google Scholar 

  7. Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619–625

    CAS  Google Scholar 

  8. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  CAS  Google Scholar 

  9. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556

    Article  CAS  Google Scholar 

  10. Kuduk SD, Beshore DC (2012) Novel M1 allosteric ligands: a patent review. Expert Opin Ther Pat 22:1385–1398

    Article  CAS  Google Scholar 

  11. Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503:295–299

    CAS  Google Scholar 

  12. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–106

    Article  CAS  Google Scholar 

  13. Thomas T, McLean K, McRobb FM, Manallack DT, Chalmers DK, Yuriev E (2013) Homology modeling of human muscarinic acetylcholine aeceptors. J Chem Inf Model 54:243–253

    Article  Google Scholar 

  14. Bhattacharjee AK, Pomponio JW, Evans SA, Pervitsky D, Gordon RK (2013) Discovery of subtype selective muscarinic receptor antagonists as alternatives to atropine using in silico pharmacophore modeling and virtual screening methods. Bioorg Med Chem 21:2651–2662

    Article  CAS  Google Scholar 

  15. Pedretti A, Vistoli G, Marconi C, Testa B (2006) Muscarinic receptors: a comparative analysis of structural features and binding modes through homology modelling and molecular docking. Chem Biodiver 3:481–501

    Article  CAS  Google Scholar 

  16. Marriott DP, Dougall IG, Meghani P, Liu YJ, Flower DR (1999) Lead generation using pharmacophore searching: application to muscarinic M3 receptor antagonists. J Med Chem 42:3210–3216

    Article  CAS  Google Scholar 

  17. Peng JY, Vaidehi N, Hall SE, Goddard WA (2006) The predicted 3D structures of human M1 muscarinic acetylcholine receptor with agonist or antagonist bound. ChemMedChem 1:878–890

    Article  CAS  Google Scholar 

  18. Johren K, Holtje HD (2002) A model of human M2 muscarinic acetylcholine receptor. J Comput Aided Mol Des 16:795–801

    Article  Google Scholar 

  19. Ostopovici L, Mracec M, Mracec M, Borota A (2007) Exploring the binding site of human muscarinic M3 receptor: homology and docking study. Int J Quantum Chem 07:1794–1802

    Article  Google Scholar 

  20. Ahungena A, Gabriel JL, Canney DJ (2003) Synthesis and evaluation of 5-substituted derivatives of 4,5-dihydro-3,3-diethyl-2(3H)-furanone as subtype-selective muscarinic leads. Med Chem Res 12:481–511

    CAS  Google Scholar 

  21. Kaiser C, Spagnuolo CJ, Adams TC, Audia VH, Dupont AC, Hatoum H, Lowe VC, Prosser JC, Sturm BL, Noronha-Blob L (1992) Synthesis and antimuscarinic properties of some N-substituted 5-(aminomethyl)-3,3-diphenyl-2(3H)-furanones. J Med Chem 35:4415–4424

    Article  CAS  Google Scholar 

  22. Bhandare RR, Canney DJ (2011) Modifications to five-substituted 3,3-diethyl-4,5-dihydro-2(3H)-furanones en route to novel muscarinic receptor ligands. Med Chem Res 20:558–565

    Article  CAS  Google Scholar 

  23. Schrödinger Small-Molecule Drug Discovery Suite Release 2013-1 (2013) is available from Schrödinger, LLC, New York

    Google Scholar 

  24. Phase, version 3.5, Schrödinger (2013) LLC, New York

    Google Scholar 

  25. Maestro, version 9.4, Schrödinger (2013) LLC, New York

    Google Scholar 

  26. LigPrep, version 2.6, Schrödinger (2013) LLC, New York

    Google Scholar 

  27. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) Phase: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening. 1. Methodology and preliminary results. J Comput-Aided Mol Des 20:647–671

    Article  CAS  Google Scholar 

  28. Glide, version 5.9, Schrödinger (2013) LLC, New York

    Google Scholar 

  29. Prime, version 3.2, Schrödinger (2013) LLC, New York

    Google Scholar 

  30. Birdsall NJM, Brown DA, Buckley NJ, Christopoulos A, Eglen RM, Ehlert F, Hammer R, Kilbinger HJ, Lambrecht G, Mitchelson F, Mutschler E, Nathanson NM, Schwarz RD, Tobin AB, Wess J (2013) Acetylcholine receptors (muscarinic): M1 receptor. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/Object-displayForward?objectId=13. Last modified on 24 Sept 2013. Accessed on 08 Jan 2014

  31. Birdsall NJM, Brown DA, Buckley NJ, Christopoulos A, Eglen RM, Ehlert F, Hammer R, Kilbinger HJ, Lambrecht G, Mitchelson F, Mutschler E, Nathanson NM, Schwarz RD, Tobin AB, Wess J (2013) Acetylcholine receptors (muscarinic): M2 receptor. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=14. Last modified on 09 Dec 2013. Accessed on 08 Jan 2014

  32. Dorje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharm Exp Therap 256:727–733

    CAS  Google Scholar 

  33. Pfaff O, Hildebrandt C, Waelbroeck M, Hou X, Moser U, Mutschler E, Lambrecht G (1995) The (S)-(+)-enantiomer of dimethindene: a novel M2-selective muscarinic receptor antagonist. Eur J Pharmcol 286:229–240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RB and PK thank Dr. R.S. Gaud, Dean, SPP School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, India, for his constant support and encouragement during preparation of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant S. Kharkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhandare, R.R., Gao, R., Canney, D.J., Kharkar, P.S. (2016). Novel γ-Butyrolactone Derivatives as Muscarinic Receptor Antagonists: Pharmacophore Elucidation and Docking Analyses. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Crystallizing Ideas – The Role of Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-31759-5_11

Download citation

Publish with us

Policies and ethics