Skip to main content

Automatic Workflow for the Identification of Constitutively-Expressed Genes Based on Mapped NGS Reads

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2016)

Abstract

Expression analyses such as quantitative and/or real-time PCR require the use of reference genes for normalization in order to obtain reliable assessments. The expression levels of these reference genes must remain constant in all different experimental conditions and/or tissues under study. Traditionally, housekeeping genes have been used for this purpose, but most of them have been reported to vary their expression levels under some experimental conditions. Consequently, the election of the best reference genes should be tested and validated in every experimental scenario. Microarray data are not always available for the search of appropriate reference genes, but NGS experiments are increasingly common. For this reason, an automatic workflow based on mapped NGS reads is presented with the aim of obtaining putative reference genes for a giving species in the experimental conditions of interest. The calculation of the coefficient of variation (CV) and a simple, normalized expression value such as RPKM per transcript allows for filtering and selecting those transcripts expressed homogeneously and consistently in all analyzed conditions. This workflow has been tested with Roche/454 reads obtained from olive (Olea europaea L.) pollen and pistil at different developmental stages, as well as with Illumina paired-end reads from two different accessions of Arabidopsis thaliana. Some of the putative candidate reference genes have been experimentally validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman, W.M., Walker, S.J., Vrana, K.E.: Quantitative RT-PCR: pitfalls and potential. Biotechniques 26, 112–125 (1999)

    Google Scholar 

  2. Lee, P.D., Sladek, R., Greenwood, C.M.T., Hudson, T.J.: Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res. 12, 292–297 (2002)

    Article  Google Scholar 

  3. Suzuki, T., Higgins, P.J., Crawford, D.R.: Control selection for RNA quantitation. Biotechniques 29, 332–337 (2000)

    Google Scholar 

  4. Brunner, A.M., Yakovlev, I.A., Strauss, S.H.: Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 4, 14 (2004)

    Article  Google Scholar 

  5. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K.: Genome-wide identification and testing of superior reference genes for transcript normalization. Society 139, 5–17 (2005)

    Google Scholar 

  6. Nonis, A., Vezzaro, A., Ruperti, B.: Evaluation of RNA extraction methods and identification of putative reference genes for real-time quantitative polymerase chain reaction expression studies on olive (olea europaea L.) fruits. J. Agric. Food Chem. 60, 6855–6865 (2012)

    Article  Google Scholar 

  7. Resetic, T., Stajner, N., Bandelj, D., Javornik, B., Jakse, J.: Validation of candidate reference genes in RT-qPCR studies of developing olive fruit and expression analysis of four genes involved in fatty acids metabolism. Mol. Breed. 32, 211–222 (2013)

    Article  Google Scholar 

  8. Ray, D.L., Johnson, J.C.: Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR. BMC Res. Notes. 7, 304 (2014)

    Article  Google Scholar 

  9. Ma, J., Skibbe, D.S., Fernandes, J., Walbot, V.: Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biol. 9, R181 (2008)

    Article  Google Scholar 

  10. Seoane, P., Carmona, R., Bautista, R., Guerrero-Fernández, D., Claros, G.: AutoFlow: an easy way to build workflows. In: Proceedings IWBBIO, pp. 342–349 (2014)

    Google Scholar 

  11. Lutz, U., Posé, D., Pfeifer, M., Gundlach, H., Hagmann, J., Wang, C., Weigel, D., Mayer, K.F.X., Schmid, M., Schwechheimer, C.: Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M. PLoS Genet. 11, e1005588 (2015)

    Article  Google Scholar 

  12. Carmona, R., Zafra, A., Seoane, P., Castro, A.J., Guerrero-Fernández, D., Castillo-Castillo, T., Medina-García, A., Cánovas, F.M., Aldana-Montes, J.F., Navas-Delgado, I., de Alché, J.D., Claros, M.G.: ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome. Front. Plant Sci. 6, 625 (2015)

    Google Scholar 

  13. Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., Karthikeyan, A.S., Lee, C.H., Nelson, W.D., Ploetz, L., Singh, S., Wensel, A., Huala, E.: The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 40, 1202–1210 (2012)

    Article  Google Scholar 

  14. Falgueras, J., Lara, A.J., Fernández-Pozo, N., Cantón, F.R., Pérez-Trabado, G., Claros, M.G.: SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read. BMC Bioinformatics 11, 1–12 (2010)

    Article  Google Scholar 

  15. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012)

    Article  Google Scholar 

  16. Goto, N., Prins, P., Nakao, M., Bonnal, R., Aerts, J., Katayama, T.: BioRuby: Bioinformatics software for the Ruby programming language. Bioinformatics 26, 2617–2619 (2010)

    Article  Google Scholar 

  17. de Dios, A.J., Castro, A.J., Olmedilla, A., Fernández, M.C., Rodríguez, R., Villalba, M., Rodríguez-García, M.I.: The major olive pollen allergen (Ole e I) shows both gametophytic and sporophytic expression during anther development, and its synthesis and storage takes place in the RER. J. Cell Sci. 112, 2501–2509 (1999)

    Google Scholar 

  18. Coker, J.S., Davies, E.: Selection of candidate housekeeping controls in tomato plants using EST data. Biotechniques 35, 740–748 (2003)

    Google Scholar 

  19. Vezzaro, A., Krause, S.T., Nonis, A., Ramina, A., Degenhardt, J., Ruperti, B.: Isolation and characterization of terpene synthases potentially involved in flavor development of ripening olive (Olea europaea) fruits. J. Plant Physiol. 169, 908–914 (2012)

    Article  Google Scholar 

  20. Yanik, H., Turktas, M., Dundar, E., Hernandez, P., Dorado, G., Unver, T.: Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biol. 13, 10 (2013)

    Article  Google Scholar 

  21. Nicot, N.: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56, 2907–2914 (2005)

    Article  Google Scholar 

  22. Maroufi, A., Van Bockstaele, E., De Loose, M.: Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol. Biol. 11, 15 (2010)

    Article  Google Scholar 

  23. Reid, K.E., Olsson, N., Schlosser, J., Peng, F., Lund, S.T.: An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 6, 27 (2006)

    Article  Google Scholar 

  24. Die, J.V., Román, B., Nadal, S., González-Verdejo, C.I.: Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232, 145–153 (2010)

    Article  Google Scholar 

  25. Ronning, C.M., Stegalkina, S.S., Ascenzi, R.A., Bougri, O., Hart, A.L., Utterbach, T.R., Vanaken, S.E., Riedmuller, S.B., White, J.A., Cho, J., Pertea, G.M., Lee, Y., Karamycheva, S., Sultana, R., Tsai, J., Quackenbush, J., Griffiths, H.M., Restrepo, S., Smart, C.D., Fry, W.E., Van Der Hoeven, R., Tanksley, S., Zhang, P., Jin, H., Yamamoto, M.L., Baker, B.J., Buell, C.R.: Comparative analyses of potato expressed sequence tag libraries. Plant Physiol. 131, 419–429 (2003)

    Article  Google Scholar 

  26. Gohain, B.: Rubisco-bis-phosphate oxygenase (RuBP)- A potential housekeeping gene forqPCR assays in tea. African J. Biotechnol. 11, 11193–11199 (2012)

    Google Scholar 

  27. Hoedemaekers, K., Derksen, J., Hoogstrate, S.W., Wolters-Arts, M., Oh, S.-A., Twell, D., Mariani, C., Rieu, I.: BURSTING POLLEN is required to organize the pollen germination plaque and pollen tube tip in Arabidopsis thaliana. New Phytol. 206, 255–267 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by co-funding from the ERDF (European Regional Development Fund) and (i) MINECO (grants BFU2011-22779 and RECUPERA2020-3.1.4.), (ii) INIA (grant RTA2013-00068-C03-02), and (iii) PAI (grants P10-CVI-6075, P10-AGR-6274 and P11-CVI-7487). The authors also thankfully acknowledge the computer resources and the technical support provided by the Plataforma Andaluza de Bioinformática of the University of Málaga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gonzalo Claros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Carmona, R., Seoane, P., Zafra, A., Jiménez-Quesada, M.J., Alché, J.d.D., Claros, M.G. (2016). Automatic Workflow for the Identification of Constitutively-Expressed Genes Based on Mapped NGS Reads. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics