Skip to main content

Epithelial-Mesenchymal Transition Regulatory Network-Based Feature Selection in Lung Cancer Prognosis Prediction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9656))

Abstract

Feature selection technique is often applied in identifying cancer prognosis biomarkers. However, many feature selection methods are prone to over-fitting or poor biological interpretation when applied on biological high-dimensional data. Network-based feature selection and data integration approaches are proposed to identify more robust biomarkers. We conducted experiments to investigate the advantages of the two approaches using epithelial mesenchymal transition regulatory network, which is demonstrated as highly relevant to cancer prognosis. We obtained data from The Cancer Genome Atlas. Prognosis prediction was made using Support Vector Machine. Under our experimental settings, the results showed that network-based features gave significantly more accurate predictions than individual molecular features, and features selected from integrated data (RNA-Seq and micro-RNA data) gave significantly more accurate predictions than features selected from single source data (RNA-Seq data). Our study indicated that biological network-based feature transformation and data integration are two useful approaches to identify robust cancer biomarkers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We applied the lasso function implemented in MATLAB R2015a to select the feature set that has the minimum mean squared error.

References

  1. Ludwig, J.A., Weinstein, J.N.: Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. cancer 5(11), 845–856 (2005)

    Article  Google Scholar 

  2. Hanash, S.M., Pitteri, S.J., Faca, V.M.: Mining the plasma proteome for cancer biomarkers. Nature 452(7187), 571–579 (2008)

    Article  Google Scholar 

  3. Saeys, Y., Inza, I., Larraaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  5. Thousands of Samples are Needed to Generate a Robust Gene List for Predicting Outcome in Cancer, vol. 103. National Academy Sciences (2006)

    Google Scholar 

  6. Haury, A.-C., Gestraud, P., Vert, J.-P.: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PloS One 6(12), e28210 (2011)

    Article  Google Scholar 

  7. Patel, V.N., Gokulrangan, G., Chowdhury, S.A., Chen, Y., Sloan, A.E., Koyutrk, M., Barnholtz-Sloan, J., Chance, M.R.: Network signatures of survival in glioblastoma multiforme. PLoS Comput. Biol. 9(9), e1003237 (2013)

    Article  Google Scholar 

  8. Dao, P., Colak, R., Salari, R., Moser, F., Davicioni, E., Schönhuth, A., Ester, M.: Inferring cancer subnetwork markers using density-constrained biclustering. Bioinformatics 26(18), i625–i631 (2010)

    Article  Google Scholar 

  9. Clarke, R., Ressom, H.W., Zhang, Y., Xuan, J.: Module-based breast cancer classification. Int. J. Data Min. Bioinform. 7, 284–302 (2013)

    Article  Google Scholar 

  10. Holzinger, E.R., Li, R., Pendergrass, S.A., Kim, D., Ritchie, M.D.: Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 16, 85–97 (2015)

    Article  Google Scholar 

  11. Kim, D., Shin, H., Song, Y.S., Kim, J.H.: Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. J. Biomed. Inform. 45(6), 1191–1198 (2012)

    Article  Google Scholar 

  12. Huang, H.-L., Wu, Y.-C., Su, L.-J., Huang, Y.-J., Charoenkwan, P., Chen, W.-Li., Lee, H.-C., Chu, W.C.-C., Ho, S.-Y.: Discovery of prognostic biomarkers for predicting lung cancer metastasis using microarray and survival data. BMC Bioinform. 16(1) (2015)

    Google Scholar 

  13. Zhao, Q., Shi, X., Xie, Y., Huang, J., Shia, B.C., Ma, S.: Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Briefings Bioinform. 16(2), 291–303 (2015)

    Article  Google Scholar 

  14. Schliekelman, M.J., Taguchi, A., Zhu, J., Dai, X., Rodriguez, J., Celiktas, M., Zhang, Q., Chin, A., Wong, C.-H., Wang, H., et al.: Molecular portraits of epithelial, mesenchymal, and hybrid states in lung adenocarcinoma and their relevance to survival. Cancer Res. 75(9), 1789–1800 (2015)

    Article  Google Scholar 

  15. Chaffer, C.L., Weinberg, R.A.: A perspective on cancer cell metastasis. Science 331(6024), 1559–1564 (2011)

    Article  Google Scholar 

  16. Elsevier. EMT as the Ultimate Survival Mechanism of Cancer Cells, vol. 22 (2012)

    Google Scholar 

  17. Derynck, R., Lamouille, S., Xu, J.: Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014)

    Article  Google Scholar 

  18. Kalluri, R., Weinberg, R.A.: The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119(6), 1420–1428 (2009)

    Article  Google Scholar 

  19. Amin, E.M., Oltean, S., Hua, J., Gammons, M.V.R., Hamdollah-Zadeh, M., Welsh, G.I., Cheung, M.-K., Ni, L., Kase, S., Rennel, E.S., Symonds, K.E., Nowak, D.G., Royer-Pokora, B., Saleem, M.A., Hagiwara, M., Schumacher, V.A., Harper, S.J., Hinton, D.R., Bates, D.O., Ladomery, M.R.: WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20(6), 768–780 (2011)

    Article  Google Scholar 

  20. Berx, G., De Craene, B.: Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13(6), 97–110 (2013)

    Google Scholar 

  21. Ji, Y., Zhu, Y., Qiu, P.: TCGA-Assembler: open-source software for retrieving and processing TCGA data. Nat. Methods 11, 599–600 (2014)

    Article  Google Scholar 

  22. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)

    Article  Google Scholar 

  24. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  25. World Scientific. Integrative Network Analysis to Identify Aberrant Pathway Networks in Ovarian Cancer (2012)

    Google Scholar 

Download references

Acknowledgment

This study was funded by the German Ministry of Research and Education (BMBF) Project Grant 3FO18501 (Forschungscampus MODAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borong Shao .

Editor information

Editors and Affiliations

Appendix

Appendix

EMT network interactions were given in Table 4.

Table 4. EMT regulatory network

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Shao, B., Conrad, T. (2016). Epithelial-Mesenchymal Transition Regulatory Network-Based Feature Selection in Lung Cancer Prognosis Prediction. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics