Skip to main content

Edough-Cap de Fer Polymetallic District, Northeast Algeria: II. Metallogenic Evolution of a Late Miocene Metamorphic Core Complex in the Alpine Maghrebide Belt

  • Chapter
  • First Online:
Mineral Deposits of North Africa

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

During the late Oligocene-early Miocene, three main hydrothermal events formed polymetallic deposits of the Edoug-Cap de Fer in the Edough massif of the Alpine Maghrebide belt. At ca. 17 Ma, the Karézas As (löllingite)-F (fluorite)-W (scheelite) deposit formed at a depth of ca. 2 km and temperatures of ca. 450–500 °C, from mixing between magmatic-hydrothermal hypersaline fluids issued from a concealed rare-metal granite and several metamorphic fluids derived from the metamorphic core complex. Slightly later, at ca. 16 Ma, the intrusion of microgranites produced high-enthalpy, liquid-dominated geothermal fields at the basement-Kabylian flysch boundary, with Numidian flysch acting as an impermeable lid and host for “mesothermal” polymetallic vein fields (Aïn Barbar, Mellaha, Saf-Saf). Temperatures as high as ca. 350–375 °C were attained in the deep parts of the Aïn Barbar field, at depths of ca. 1.3–1.5 km, accompanied by massive input of sodium that formed metasomatic plagioclase-rich hornfels (Chaïba domain); higher in the Cretaceous flysch aquifer, influx of hydrothermal fluids (300–270 °C) produced hydrothermal metamorphic assemblages of quartz-chlorite, calcite-chlorite, wairakite-chlorite, and epidote. The source of these hot fluids was a basement of the Edough type, in which heat advection was likely related to emplacement of a granite batholith at depth. Concomitant with the paleogeothermal circulations, fault activity created N170° E-trending fracture zones that progressively channeled fluid flow, with the development of propylitically altered linear zones and ore precipitation (Zn–Pb–Cu) at temperatures between 330 and 285 °C. At ca. 15 Ma, renewed magmatic activity (subvolcanic rhyolite dikes) was associated with the generation of new and shallow (ca. 800 m depth) geothermal fields, wherein convected surficial fluids (meteoric and possibly seawater) formed “epithermal” deposits including polymetallic quartz veins, quartz-stibnite metasomatic deposits in marble, and quartz-arsenopyrite-gold showings, at mostly lower temperatures of 300–250 °C. Excepting the Karézas skarn, for which a magmatic origin of the tungsten is likely, the metals deposited by the different hydrothermal systems were mainly sourced in rocks of the metamorphic core complex and its tectonically emplaced cover of Cretaceous flysch. Only a minor contribution of metals came from the magmatic rocks, as shown by lead isotope data for the Aïn Barbar area. In particular, amphibolite of the Marble Complex in the Edough sequence may have been a major source of copper and the epithermal antimony (and gold?). The Edough-Cap de Fer district is directly linked to the evolution of the Edough metamorphic core complex. Although metallogenic activity began after the end of ductile deformation, metamorphic fluids derived from the core complex seem to have played a key role in the first stages of the hydrothermal circulation and related mineralization (Karézas W skarn, mesothermal polymetallic veins). However, the role of the late Miocene magmatism, induced by collisional processes through slab break-off and/or lithospheric delamination, was of equal importance in the genesis of the Edough-Cap de Fer metallic deposits, being the source of the heat advection responsible for hydrothermal convection during the meso- and epithermal mineralization. Finally, it appears that the transition from extension (related to opening of the Algerian-Provençal oceanic basin) to transpression (when the collision resumed), at the end of the Miocene, was the ultimate control on the mineralizing events in the Edough metamorphic core complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed-Saïd Y, Leake RE (1992) The composition and origin of Kef Lahal amphibolites and associated amphibolite and olivine-rich enclaves, Edough, Annba, NE Algeria. Min Mag 56:459–468

    Article  Google Scholar 

  • Aïssa DE (1996) Etude géologique, géochimique et métallogénique du massif de l’Edough (Annaba, NE Algérie). Unpubl Thèse Doctorat Etat, USTHB, Alger, Algeria, 500 pp

    Google Scholar 

  • Aïssa DE, Cheilletz A, Gasquet D, Marignac C (1995) Alpine metamorphic core complexes and metallogenesis: the Edough case (NE Algeria). In: Pašava J, Kříbek B, Žák K (eds) Mineral deposits: from their origin to their environmental impacts. In: Proceedings of 3rd Biennial SGA Meeting, Prague. A.A. Balkema, Rotterdam, pp 23–26

    Google Scholar 

  • Aïssa DE, Marignac C, Cheilletz A, Gasquet D (1998a) Géologie et métallogénie sommaire du massif de l’Edough (NE Algérie). Mémoires Serv Géol Algérie 9:7–55

    Google Scholar 

  • Aïssa DE, Marignac C, Cheilletz A, Boiron M-C (1998b) L’indice à arsénopyrite aurifère du Koudiet El Harrach (Edough, Annaba). Bull Serv Géol Algérie 13:3–20

    Google Scholar 

  • Aïssa DE, Marignac C, Cheilletz A, Gasquet D (1999) Le skarn à scheelite de Karezas (Annaba, Nord-Est Algérie): un skarn polycyclique d’âge burdigalien. Bull Serv Géol Algérie 10:3–53

    Google Scholar 

  • Aïssa DE, Cheilletz A, Marignac C (2001) Magmatic fluids and skarn mineralization: the Burdigalian As-W skarn at Karézas (Edough massif, NE Algeria). In: Piestrzyñski A (ed) Mineral deposits at the beginning of the 21st Century. In: Proceedings of 6th Biennial SGA Meeting, Krakow, A.A. Balkema, Rotterdam, pp 877–880

    Google Scholar 

  • Aksyuk AM, Konyshev AA (2011) Experimental study of melting of the Voznesenska biotite and Li-F granites. Vestn Otd Nauk Zemle 3:NZ6002, doi:10.2205/2011NZ000132

    Google Scholar 

  • Atkinson AB (2002) A model for the PTX properties of H2O-NaCl. Unpublished MS Thesis, Virginia Polytechnic Institute, Blacksburg, Virginia, USA, 124 pp

    Google Scholar 

  • Barton PB Jr (1978) Some ore textures involving sphalerite from the Futurobe mine, Akita Prefecture, Japan. Min Geol 28:293–300

    Google Scholar 

  • Beaudouin G, Taylor BE, Sangster DF (1991) Silver-lead-zinc veins, metamorphic core complexes, and hydrologic regimes during crustal extension. Geology 19:1217–1220

    Article  Google Scholar 

  • Belhaj O (1992) Les gisements d’antimoine du massif du Tazekka (Maroc oriental): minéralogie, fluides hydrothermaux et conditions de formation. Unpublished Doctoral Thesis, Toulouse 3 University, Toulouse, France, 396 pp

    Google Scholar 

  • Bodnar RJ (2003) Introduction to aqueous-electrolyte fluid inclusions. In: Samson I, Anderson M, Marsahall D (eds) Fluid inclusions: analysis and interpretation. Mineral Assoc Canada, Short Course Notes 32:81–99

    Google Scholar 

  • Boiron M-C, Cathelineau M, Banks DA, Fourcade S, Vallance J (2003) Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: consequences for gold deposition. Chem Geol 194:119–142

    Article  Google Scholar 

  • Bouabsa L, Marignac C, Chabbi R, Cuney M (2010) The Filfila (NE Algeria) topaz-bearing granites and their rare metal minerals: petrologic and metallogenic implications. J Afr Earth Sci 56:107–113

    Article  Google Scholar 

  • Bouillin J-P (1979) La transversale de Collo et El-Milia (Petite Kabylie): une région-clef pour l’interprétation alpine de la chaîne littorale d’Algérie. Mémoire Soc Geol France 57:84 pp

    Google Scholar 

  • Bowers TS, Helgeson HC (1983) Calculation of the thermodynamics and geochemical consequences of non-ideal mixing in the system H2O-CO2-NaCl on phase relations in geological systems: equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim Cosmochim Acta 47:1247–1275

    Article  Google Scholar 

  • Brown M, Solar GS (1999) The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm. Tectonophys 312:1–33

    Article  Google Scholar 

  • Bruguier O, Hammor D, Bosch D, Caby R (2009) Miocene incorporation of peridotite into the Hercynian basement of the Maghrebides (Edough massif, NE Algeria): implications for the geodynamic evolution of the Western Mediterranean. Chem Geol 261:172–184

    Article  Google Scholar 

  • Brunel M, Hammor D, Misseri M, Gleizes G, Bouleton J (1988) Cisaillements synmétamorphiques avec transport vers le Nord-Ouest dans le massif cristallin de l’Edough (Est Algérien). C R Acad Sci Paris 306(II):1039–1045

    Google Scholar 

  • Bucher K, Stober I (2010) Fluids in the upper continental crust. Geofluids 10:241–253

    Google Scholar 

  • Caby R, Hammor D (1992) Le massif cristallin de l’Edough (Algérie): un “metamorphic core complex” d’âge Miocène dans les Maghrébides. C R Acad Sci Paris 314:829–835

    Google Scholar 

  • Caillère S, Kraut F (1947) Sur une zone tungstifère d’origine métamorphique dans le massif de Béléliéta (Algérie). C R Acad Sci Paris 225:129–131

    Google Scholar 

  • Cathelineau M, Marignac C, Boiron MC, Gianelli G, Puxeddu M (1994) Evidence for Li-rich brines and early magmatic fluid-rock interaction in the Larderello geothermal system. Geochim Cosmochim Acta 58:1083–1099

    Article  Google Scholar 

  • Cathles L (1977) An analysis of the cooling of intrusives by ground-water convection which includes boiling. Econ Geol 72:804–826

    Article  Google Scholar 

  • Costagliola P, Benvenuti M, Maineri C, Lattanzi P, Ruggieri G (1999) Fluid circulation in the Apuane Alps core complex: evidence from extension veins in the Carrara marble. Mineral Mag 63:111

    Article  Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet J-C, Savostin LA, Sorokhtin O, Westphal W, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophys 123:241–315

    Article  Google Scholar 

  • Diamond LW (1992) Stability of CO2 clathrate hydrate+CO2 liquid+CO2 vapor+aqueous KCl-NaCl solutions: experimental determination and application to salinity estimates of fluid inclusions. Geochim Cosmochim Acta 56:273–280

    Article  Google Scholar 

  • Doblas M, Oyarzun R, Lunar R, Mayor N, Martinez J (1988) Detachment faulting and late Paleozoic epithermal Ag-base metal mineralization in the Spanish central system. Geology 16:800–803

    Article  Google Scholar 

  • Dubois M, Monnin C, Castelain T, Coquinot Y, Gouy S, Gauthier A, Goffé B (2010) Investigation of the H2O-NaCl-LiCl system: a synthetic fluid inclusion study and thermodynamic modelling from -50° to +100°C and up to 12 mol/kg. Econ Geol 105:329–338

    Article  Google Scholar 

  • Durand-Delga M (1969) Mise au point sur la structure Nord-Est de la Berbérie. Bull Serv Carte Géol Algérie 39:89–131

    Google Scholar 

  • Durand-Delga M, Rossi P, Olivier P, Puglisi D (2000) Situation structurale et nature ophiolitique de roches basiques jurassiques associées aux flyschs maghrébins du Rif (Maroc) et de Sicile. C R Acad Sci Paris, Sci Terre Planètes/Earth Planet Sci 331:29–38

    Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. In: Skinner BJ (ed) Economic geology 75th anniversary volume, 1905–1980. Economic Geology Publishing Co, El Paso, pp 317–391

    Google Scholar 

  • Esteban JJ, Cuevas J, Vegas N, Tubia JM (2008) Deformation and kinematics in a melt-bearing shear zone from the western Betic Cordilleras (southern Spain). J Struct Geol 30:380–393

    Article  Google Scholar 

  • Fellin MG, Reiners PW, Brandon MT, Wüthrich E, Balestrieri ML, Molli G (2007) Thermochronologic evidence for the exhumational history of the Alpi Apuane metamorphic core complex, northern Apennines, Italy. Tectonics, vol 26. doi:10.1029/2006TC002085

    Google Scholar 

  • Fourcade S, Capdevila R, Ouabadi A, Matineau F (2001) The origin and geodynamic significance of the Alpine cordierite-bearing granitoids of northern Algeria: a combined petrological, mineralogical and isotopic O, H, Sr, Nd study. Lithos 57:187–216

    Article  Google Scholar 

  • Frizon de Lamotte D, Saint-Bezar B, Bracene R, Mercier E (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19:740–761

    Article  Google Scholar 

  • Gibert F, Moine B, Schott J, Dandurand J-L (1992) Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France. Contrib Mineral Petrol 112:371–384

    Article  Google Scholar 

  • Gilg HA, Boni M, Balassone G, Allen CR, Banks D, Moore F (2006) Marble-hosted sulfide ores in the Angouran Zn-(Pb-Ag) deposit, NW Iran: interaction of sedimentary brine with a metamorphic core complex. Min Dep 41:1–16

    Article  Google Scholar 

  • Glaçon J (1971) Les gîtes minéraux liés au magmatisme tertiaire en Algérie du Nord. Colloque E Raguin. Les roches plutoniques dans leurs rapports avec les gîtes minéraux. Masson, Paris, pp 214–224

    Google Scholar 

  • Gleizes G, Bouloton J, Bossière G, Collomb P (1988) Données lithologiques et pétrostructurales nouvelles sur le massif cristallophyllien de l’Edough (Est Algérien). C R Acad Sci Paris 306(II):1001–1008

    Google Scholar 

  • Hadj Zobir S, Mocek B (2012) Determination of the source rocks for the diatexites from the Edough massif, Annaba, NE Algeria. J Afr Earth Sci 69:26–33

    Article  Google Scholar 

  • Heald P, Foley NK, Hayba DO (1986) Comparative anatomy of volcanic-hosted epithermal deposits; acid-sulfate and adularia-sericite types. Econ Geol 82:1–26

    Article  Google Scholar 

  • Henni B, Aïssa DE (2007) Géologie et géochimie des formations ferrifères de l’Edough (Annaba, NE algérien). Bull Serv Géol Algérie 18:297–314

    Google Scholar 

  • Henni B, Guy B, Aïssa DE, Garcia D (2002) Les anciens gisements et indices de magnétite de Berrahal et ses environs, massif de l’Edough (NE algérien): environnement géologique et données pétrographiques. Bull Serv Géol Algérie 13:33–48

    Google Scholar 

  • Heymes T, Monié P, Arnaud N, Pêcher A, Bouillin JP, Compagnoni R (2010) Alpine tectonics in the Calabrian-Peloritan belt (southern Italy): new 40Ar/39Ar data in the Aspromonte Massif area. Lithos 114:451–472

    Google Scholar 

  • Hilly J (1962) Etude géologique du massif de l’Edough et du Cap de Fer (est Constantinois). Publ Serv Géol Algérie (nouv sér) 19:1–408

    Google Scholar 

  • Holk GH, Taylor HP Jr (2007) 18O/16O evidence for contrasting hydrothermal regimes involving magmatic and meteoric-hydrothermal waters at the Valhalla metamorphic core complex, British Columbia. Econ Geol 102:1063–1078

    Article  Google Scholar 

  • Howard KA (2003) Crustal structure in the Elko-Carlin region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust. Econ Geol 98:249–268

    Article  Google Scholar 

  • Ilavsky J, Snopkova P (1987) Découverte d’Acritarches paléozoïques dans les terrains métamorphiques de l’Edough (Willaya d’Annaba, Algérie). C R Acad Sci Paris 305:881–884

    Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106

    Article  Google Scholar 

  • Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can Miner 14:364–386

    Google Scholar 

  • Kwak TAP (1987) W-Sn skarn deposits and related metamorphic skarns and granitoids. Elsevier Sci Publ B.V, Amsterdam 449 pp

    Google Scholar 

  • Lindgren W (1933) Mineral deposits, 4th edn. McGraw-Hill, New York 930 pp

    Google Scholar 

  • Linnen RL, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL, Samson IM (eds) Rare-element geochemistry and mineral deposits. Geological Association of Canada. Short Course Notes 17:45–67

    Google Scholar 

  • Marchev P, Kaiser-Rhormeier M, Heinrich C, Ovtcharova M, von Quadt A, Raicheva R (2005) Hydrothermal ore deposits related to post-orogenic extensional magmatism and core complex formation: the Rhodope massif of Bulgaria and Greece. Ore Geol Rev 27:53–89

    Article  Google Scholar 

  • Marignac C (1985) Les minéralisations filoniennes d'Aïn Barbar (Algérie): un exemple d'hydrothermalisme lié à l'activité géothermique alpine en Afrique du Nord. Unpubl Thesis Doctorat Etat, INPL-Nancy: 2 vol, p. 1163

    Google Scholar 

  • Marignac C, Aïssa DE, Cheilletz A, Gasquet D (2015) Edough-Cap de Fer polymetallic district, northeast Algeria: I. The late Miocene paleogeothermal system of Aïn Barbar and its Cu-Zn-Pb vein mineralization. In: Bouabdellah M, Slack JF (eds) Mineral deposits of North Africa. Springer, Berlin

    Google Scholar 

  • Maury RC, Fourcade S, Coulon C, El Azzouzi M, Bellon H, Coutelle A, Ouabadi A, Semroud B, Megartzsi M, Cotton J, Belanteur O, Louni-Hacini A, Piqué A, Capdevila R, Hernandez J, Réhault JP (2000) Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab break-off. C R Acad Sci Paris 331:159–173

    Article  Google Scholar 

  • Michard A, Negro F, Saddiqi O, Bouybaouene ML, Chalouan A, Montigny R;, Goffé B (2006) Pressure-temperature-time constraints on the Maghrebide mountain building: evidence from the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. Comptes Rendus Géoscience 338:92–114

    Google Scholar 

  • Monastero FC, Katzenstein AM, Miller JS, Unruh JR, Adams MC, Richards-Dinger K (2005) The Coso geothermal field: a nascent metamorphic core complex. Geol Soc Am Bull 117:1534–1553

    Article  Google Scholar 

  • Monié P, Montigny R, Maluski H (1992) Age Burdigalien de la tectonique ductile extensive dans le massif de l’Edough (Kabylies, Algérie). Données radiométriques 39Ar/40Ar. Bull Soc Géol France 163:571–584

    Google Scholar 

  • Norlander BH, Whitney DL, Teyssier C, Vanderhaeghe O (2002) Partial melting and decompression of the Thor-Odin dome, Shuswap metamorphic core complex, Canadian Cordillera. Lithos 61:103–125

    Article  Google Scholar 

  • Norton D, Cathles LM (1979) Thermal aspects of ore deposition. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 568–610

    Google Scholar 

  • Okay AI, Samir M (2000) Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geol Mag 137:495–516

    Article  Google Scholar 

  • Pichavant M, Boher M, Stenger JF, Aïssa M, Charoy B (1987) Relations de phase des granites de Beauvoir à 1 et 3 kb, en conditions de saturation en H2O. Géologie France 2–3:77–86

    Google Scholar 

  • Piqué A, Tricart P, Guiraud R, Laville E, Bouaziz S, Amrhar M, Ait Ouali R (2002) The Mesozoic-Cenozoic Atlas belt (North Africa): an overview. Geodinam Acta 15:185–208

    Google Scholar 

  • Puxeddu E (1984) Structure and late Cenozoic evolution of the upper lithosphere in southwest Tuscany (Italy). Tectonophys 101:357–382

    Article  Google Scholar 

  • Rhormeyer MK, von Quadt A, Driesner T, Heinrich CA, Handler R, Ovtcharova M, Ivanov Z, Petrov P, Sarov ST, Peytcheva I (2013) Post-orogenic extension and hydrothermal ore formation: high-precision geochronology of the central Rhodopian metamorphic core complex (Bulgaria-Greece). Econ Geol 108:691–718

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Min Soc Am Rev Mineral 12:646 pp

    Google Scholar 

  • Roure F, Casero P, Addoum B (2012) Alpine inversion of the North African margin and delamination of its continental lithosphere. Tectonics 31:TC3006. doi:10.1029/2011TC0022989

  • Sami R, Soussi M, Kamel B, Lattrache Kmar BI, Stow D, Sami K, Mourad B (2010) Stratigraphy, sedimentology and structure of the Numidian Flysch thrust belt in northern Tunisia. J AFR EARTH SCI 57:109–126

    Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310

    Article  Google Scholar 

  • Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer: pressure considerations and applications to natural assemblages. Can Mineral 23:517–534

    Google Scholar 

  • Sillitoe RH (1993) Epithermal models: genetic tpes, geometrical controls and shallow features. In: Kirkham RV, Sinclair WD, Thorpe RI, Duke JM (eds) Mineral deposit modeling, Geol Assoc Canada Spec Paper 40:403–418

    Google Scholar 

  • Spencer JE, Welty JW (1986) Possible control of base- and precious-metal mineralization associated with Tertiary detachment faults in the lower Colorado River trough, Arizona and California. Geology 14:195–198

    Article  Google Scholar 

  • Thomas MFH, Bodin S, Redfern J, Irving DHB (2010) A constrained African craton source for the Cenozoic Numidian flysch: implications for the palaeogeography of the western Mediterranean basin. Earth Sci Rev 101:1–23

    Article  Google Scholar 

  • Tischendorff G, Gottesmann B, Förster H-J, Trumbull RB (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Min Mag 61:809–834

    Article  Google Scholar 

  • Toubal A (1984) Contribution à l’étude des minéralisations antimonifères du Nord-Est algérien: une province métallogénique hétérochrone. Unpublished Doct 3rd Cycle, UPMC (Paris 6 Univ), Paris, France, 141 pp

    Google Scholar 

  • Vanderhaeghe O (1999) Pervasive melt migration from migmatites to leucogranites in the Shuswap metamorphic core complex, Canada: control of regional deformation. Tectonophys 312:35–55

    Article  Google Scholar 

  • Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. Unpubl Thèse Doctorat Etat, Université Paris VI, Paris, France, 663 pp

    Google Scholar 

Download references

Acknowledgements

John Slack is warmly thanked for his careful editing work and improvement to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Marignac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marignac, C., Aïssa, D., Cheilletz, A., Gasquet, D. (2016). Edough-Cap de Fer Polymetallic District, Northeast Algeria: II. Metallogenic Evolution of a Late Miocene Metamorphic Core Complex in the Alpine Maghrebide Belt. In: Bouabdellah, M., Slack, J. (eds) Mineral Deposits of North Africa. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-31733-5_6

Download citation

Publish with us

Policies and ethics