Skip to main content

The F’derik-Zouérate Iron District: Mesoarchean and Paleoproterozoic Iron Formation of the Tiris Complex, Islamic Republic of Mauritania

  • Chapter
  • First Online:
Mineral Deposits of North Africa

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

High-grade hematitic iron ores (or HIF, containing 60–65 wt% Fe) have been mined in Mauritania since 1952 from Superior-type iron deposits of the F’derik-Zouérate district. Depletion of the high-grade ores in recent years has resulted in new exploration projects focused on lower-grade magnetite ores occurring in Algoma-type banded iron formation (or BIF, containing ca. 35 wt% Fe). Mauritania is the seventeenth largest iron producer in the world and currently has about 1.1 Gt of crude iron ore reserves. The main host for Algoma-type iron ore in the district is magnetite quartzite layers (formerly BIF) within Mesoarchean granulite-facies rocks of the Tiris Complex. Superior-type iron ores are restricted to the allochthonous Paleoproterozoic sequences of the Kediat Ijil and Guelb El Mhaoudat, which overlie the Tiris Complex. Paleoproterozoic BIF are present in the Sfariat belt that hosts at least three known iron occurrences, and at Guelb Zednes, all of which are interpreted as fragments of Superior-type BIF that were imbricated with, or allochthonously deposited on, the Mesoarchean-Paleoproterozoic suture zone during the Birimian orogeny. Prominent linear, high-amplitude magnetic anomalies associated with BIF are characteristic of the region. Paleoproterozoic rocks in the Kediat Ijil, a klippe of metasedimentary rocks including ferruginous chert capped by a distinctive conglomerate unit, and in the El Mhaoudat Range, produce very prominent, broad, high-amplitude magnetic anomalies that can be extended at least 150 km along strike projected beneath the Taoudeni Basin to depths of >2000 m. New petrographic, geochemical, and geochronologic data presented here elucidate several features of the iron deposits, their tectonic history, and possible processes of enrichment of BIF protore to HIF. The Zouérate district iron ores are remarkably pure, consisting almost wholly of hematite and quartz. Contents of all major elements other than iron and silica are well below global averages for hematitic iron ores; minor and trace element contents are similar to those of other deposits worldwide. However, Zouérate HIF shows a general depletion of REE, a positive Eu anomaly, and a preferential enrichment of HREE compared to LREE. U–Pb ages of detrital zircons in the Tazadit and Seyala Conglomerate Formations of the Kediat Ijil are consistent with their derivation from the Tiris Complex. This interpretation suggests a passive margin depositional environment on the northeastern edge of the Mesoarchean Rgueïbat Shield, unaffected by clastic input from early Birimian tectonic elements. In contrast, ages of detrital zircons from rocks faulted against the Mhaoudat Formation show depositional peaks consistent with input from Birimian and Neoproterozoic sources. These age data imply that tectonic emplacement of Guelb El Mhaoudat could have occurred as a result of Pan African orogenic events; such a Pan African record represents a previously unrecognized tectonic element in this part of the Rgueïbat Shield. Timing of enrichment of protore BIF to HIF is poorly constrained and may have resulted from multiple metamorphic-hydrothermal events from 2.83 to 1.6 Ga. Geochemical trends are consistent with interaction by a relatively high-temperature, oxidizing, and possibly alkaline fluid. A supergene weathering profile exists in the Zouérate district and began forming during uplift related to opening of the Atlantic Ocean at about 160 Ma, based on a new apatite fission track age. However, effects of this supergene enrichment are relatively minor, being superimposed on one or several metamorphic-hydrothermal events responsible for the transformation of BIF to HIF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bekker A, Slack JF, Planavsky N, Krapež B, Hofmann A, Konhauser KO, Rouxel OJ (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol 105:467–508

    Article  Google Scholar 

  • Beukes JB, Gutzmer J (2008) Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Rev Econ Geol 15:5–48

    Google Scholar 

  • Blanchot A (1975) Mineral plan of the Islamic Republic of Mauritania. BRGM Direction des Recherches Développement Minière, Orléans 554 pp

    Google Scholar 

  • Bradley DC, O’Sullivan P, Cosca MA, Motts HA, Horton JD, Taylor CD, Beaudoin G, Lee GK, Ramezani J, Bradley DN, Jones JV, Bowring, S (2015) Synthesis of geological, structural, and geochronologic data. In: Taylor CD (ed) Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II). US Geol Survey Open-File Rept 2013‒1280-A, 328 pp. http://dx.doi.org/10.3133/ofr20131280a/. [In English and French]

  • Bronner G (1970) Plissement, cisaillement, boudinage et laminage: mecanismes essentiels de la formation de la Breche d’Ijil (Precambrien de la Dorsale Reguibat, Fort-Gouraud, Mauritanie Septentrionale). Service Carte Geol, Alsace-Lorraine Bull 23:51–76

    Google Scholar 

  • Bronner G (1988) La Chaîne de M’Haoudat (Mauritanie): géologie, architecture, minéralisations ferrifères riches associées. Rapp Inéd Société National Industrielle Minière, 33 pp

    Google Scholar 

  • Bronner G (1992) Structure et évolution d’un craton archéen: la dorsale Rgueïbat occidentale (Mauritanie); tectonique et métallogénie des formations ferrifères. Thesis Doctoral, Univ Aix-Marseille III, Marseille, France, BRGM Doc 02212536, N° 201, 449 pp

    Google Scholar 

  • Bronner G, Chauvel JJ (1979) Precambrian banded iron-formations of the Ijil Group (Kediat Ijil, Reguibat Shield, Mauritania). Econ Geol 74:77–94

    Google Scholar 

  • Bronner G, Fourno JP (1992) Audio-magnetotelluric investigation of allochthonous iron formations in the Archaean Reguibat Shield (Mauritania): structural and mining implications. J Afr Earth Sci 15:341–351

    Google Scholar 

  • Bronner G, Chauvel JJ, Triboulet C (1992) Les formations ferriferes du Precambrien de Mauritanie: origine et evolution des quartzites ferrugineux. Chronique Recherche Minière 508:3–27

    Google Scholar 

  • Clark DA (1997) Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO J Aust Geol Geophys 17:83–103

    Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68:1135–1110

    Article  Google Scholar 

  • Clout JMF, Simonson BM (2005) Precambrian iron formations and iron formation-hosted iron ore deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume, 1905–2005. Society Economic Geologists, Inc, Littleton, CO, USA, pp 643–679

    Google Scholar 

  • Finn CA, Anderson ED (2015) Synthesis of geophysical data. In: Taylor CD (ed) Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II). US Geol Survey Open-File Rept 2013‒1280-B, 68 pp. http://dx.doi.org/10.3133/ofr20131280b/ (In English and French)

  • Gehrels GE, Dickinson WR (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125

    Google Scholar 

  • Gross GA (1980) A classification of iron-formation based on depositional environments. Can Min 18:215–222

    Google Scholar 

  • Gutzmer J, Chisonga BC, Beukes NJ, Mukhopadhyay J (2008) The geochemistry of banded iron formation-hosted high-grade hematite-martite iron ore. Rev Econ Geol 15:157–183

    Google Scholar 

  • Henry P (1995) Étude chimique et isotopique (Nd) de formations ferrifères (banded iron formations ou BIFs) du Craton ouest-africain. Bull Société Géologique France 166:3–13

    Google Scholar 

  • Humphris SE (1984) The mobility of rare earth elements in the crust. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 317–342

    Chapter  Google Scholar 

  • Investec (2013) Iron ore—Sector comment—700 mt gorilla missing in West Africa. 19 November 2013, 29 pp. http://www.kogiiron.com/IRM/Company/ShowPage.aspx/PDFs/1620-51002968/700mtgorillamissinginWestAfrica

  • James HL (1954) Sedimentary facies of iron-formation. Econ Geol 49:235–293

    Article  Google Scholar 

  • Jorgenson JD (2012) Iron ore: US Geol Survey, Mineral Commodity Summaries, January 2012, pp 84–85. http://minerals.usgs.gov/minerals/pubs/mcs/2012/mcs2012.pdf

  • Klein C (2005) Some Precambrian iron formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am Mineral 90:1473–1499

    Article  Google Scholar 

  • Lahondère D, Thieblemont D, Goujou J-C, Roger J, Moussine-Pouchkine A, LeMetour J, Cocherie A, Guerrot C (2003) Notice explicative des cartes géologiques et gîtologiques à 1/200 000 et 1/500 000 du Nord de la Mauritanie. Ministère des Mines l’Industrie, Nouakchott, DMG, vol 1, 426 pp

    Google Scholar 

  • Marot A, Stein G, Artigan D, Milési J-P (2003) Notice explicative des cartes géologiques et gîtologiques à 1/200 000 et 1/500 000 du Nord de la Mauritanie. Ministère Mines de l’Industrie, Nouakchott, DMG, Potentiel Minier, vol 2, 115 pp

    Google Scholar 

  • Marsh EE, Anderson ED (2015) Database of mineral deposits in the Islamic Republic of Mauritania. In: Taylor CD (ed) Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II). US Geol Survey Open-File Rept 2013‒1280-S, 9 pp. Access database. http://dx.doi.org/10.3133/ofr20131280s/. [In English and French]

  • Mining Journal (2006) Saudi backs Sphere. Min J 1

    Google Scholar 

  • Mining-technology.com (2012) SNIM, Mauritania. http://www.mining-technology.com/projects/snim/

  • Morey GB (1999) High-grade iron ore deposits of the Mesabi Range, Minnesota—product of a continental-scale Proterozoic ground-water flow system. Econ Geol 94:133–142

    Article  Google Scholar 

  • O’Connor EA, Pitfield PEJ, Schofield DI, Coats S, Waters C, Powell J, Ford J, Clarke S, Gillespie M (2005) Notice explicative des cartes géologiques et gîtologiques à 1/200 000 et 1/500 000 du Nord-Ouest de la Mauritanie. Ministere des Mines de l’Industrie, Nouakchott 398 pp

    Google Scholar 

  • Oksengorn S (1973) Les gisements de fer de la région de Zouérate (République de Mauritanie). Ind Min 55:338–351

    Google Scholar 

  • Phillips JD (2002) Two-step processing for 3D magnetic source locations and structural indices using extended Euler or analytic signal methods. Soc Expl Geophysicists, 2002 Technical Pgm Expanded Abs 21:727–730

    Google Scholar 

  • MCA Powell C, Oliver NHS, Li ZX, McD Martin, Ronaszeki J (1999) Synorogenic hydrothermal origin for giant Hamersley iron oxide ore bodies. Geology 27:175–178

    Article  Google Scholar 

  • Rocci G (1957) Formations métamorphiques et granitiques de la partie occidentale du pays Rgueïbat (Mauritanie du Nord). Bull Direction Fédérale Mines Géologie. Afrique Occidentale Francaise, Dakar, no 21, 1308 pp

    Google Scholar 

  • Schofield DI, Gillespie MR (2007) A tectonic interpretation of “Eburnian terrane” outliers in the Reguibat Shield, Mauritania. J Afr Earth Sci 49:179–186

    Article  Google Scholar 

  • Schofield DI, Horstwood MSA, Pitfield PEJ, Crowley QG, Wilkinson AF, Sidaty HCHO (2006) Timing and kinematics of Eburnean tectonics in the central Reguibat Shield, Mauritania. J Geol Soc 163:549–560

    Article  Google Scholar 

  • Schofield DI, Horstwood MSA, Pitfield PEJ, Gillespie MR, Darbyshire F, O’Connor EA, Abdouloye TB (2012) U–Pb dating and Sm–Nd isotopic analysis of granitic rocks from the Tiris Complex: new constraints on key events in the evolution of the Reguibat Shield, Mauritania. Precambr Res 204–205:1–11

    Article  Google Scholar 

  • SNIM (2013) Discovery of a new deposit of iron over 800 million metric tons in Tizerghaf (Zouerate), Press release 08 October 2013, 2 pp. http://www.snim.com/e/index.php/news-a-media/news/

  • SNIM (2015) Progress of Guelb2 project implementation, Press release 20 May 2015, 3 pp. http://www.snim.com/e/index.php/news-a-media/news/

  • Sougy J (1952) Rapport de Reconnaissance sur le Minerai de Fer des Sfariat (Mauritanie) Direction Fédérale Mines Géologie, Afrique Occidentale Francaise, Dakar, 25 ppSougy J (1953) Rapport géologique de fin de campagne 1951-1952 à Fort Trinquet (Mauritanie). Direction Fédérale Mines Géologie, Afrique Occidentale Francaise, Dakar 65 pp

    Google Scholar 

  • Sphere Minerals Ltd. (2012) Annual report for the 12 month period ended 31 December 2012, 53 pp. http://www.asx.com.au/asxpdf/20130402/pdf/42f0fzh6mkfvdw.pdf

  • Sphere Minerals Ltd. (2015) Annual statement of mineral resources and ore reserves, ASX Release, 30 January 2015 9 pp. http://www.asx.com.au/asxpdf/20150130/pdf/42w84bwv9lnlvh.pdf

  • Steiner C, Hobson A, Favre P (1998) Mesozoic sequence of Fuerteventura (Canary Islands): witness of Early Jurassic sea-floor spreading in the Central Atlantic. Geol Soc Am Bull 110:1304–1317

    Google Scholar 

  • Taib M (2010) The mineral industry of Mauritania. US Geol Survey 2008 Minerals Yearbook—Mauritania, 4 pp. http://minerals.usgs.gov/minerals/pubs/country/2008/myb3-2008-mr.pdf

  • Taib M (2014) The mineral industry of Mauritania. US Geol Survey 2012 Minerals Yearbook—Mauritania, 6 pp. http://minerals.usgs.gov/minerals/pubs/country/2012/myb3-2012-mr.pdf

  • Taylor CD, Giles SA (2015) Mineral potential for volcanogenic massive sulfide deposits in the Islamic Republic of Mauritania. In: Taylor CD (ed), Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II). US Geol Survey Open-File Rept 2013‒1280-L, 70 pp. http://dx.doi.org/10.3133/ofr20131280l/ (In English and French)

  • Taylor CD, Finn CA, Anderson ED, Joud MY, Taleb MA, Horton JD (2015) Algoma-, Superior-, and oolitic-type iron deposits of the Islamic Republic of Mauritania. In: Taylor CD (ed) Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II). US Geol Survey Open-File Rept 2013‒1280-O, 94 pp. http://dx.doi.org/10.3133/ofr20131280o/ (In English and French.)

  • Tecsult International Ltd. (2009) SNIM’s Guelbs II Project, Mauritania—Environmental and Social Impact Assessment—Summary 05-17309, 41 pp. http://www.afdb.org/fileadmin/uploads/afdb/Documents/Environmental-and-Social-Assessments/SNIM_Guelb_PhaseII_EIES_ExecutiveSummary_English_Final_April24_2009.pdf

  • Vachette M, Bronner G (1975) Ages radiométriques Rb/Sr de 2,900 et 2,700 m.a. des series précambriennes de l’Amsaga et du Tiris, Dorsale Réguibat (Mauritanie). Trav Lab Sci Terre Marseille Série B 11:147–148

    Google Scholar 

  • Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilization of the rare earth elements—a tale of “ceria” and “yttria”. Elements 8:355–360

    Article  Google Scholar 

  • Xstrata (2011a) Mineral resources and ore reserves as at 31 December 2011, 48 pp. http://www.xstrata.com/content/assets/pdf/x_reserves_resources_201112.pdf

  • Xstrata (2011b) Hitting our stride, Xstrata investor seminar–part two, 6 December 2011, 60 pp. http://www.xstrata.com/investors/speechesandpresentations/2011/12/06/12/

Download references

Acknowledgments

The authors wish to thank the management and geologic staff of SNIM in Zouérate, including Chief Geologist Mohamed Ould Woyssatt, Szymon Oksengorn, and Ghali Amar for their guided tour of, and permission to sample, the mines and roadcuts of the Kediat Ijil, Guelb El Mhaoudat, and Guelb El Rhein. PRISM regional coordinator Ahmed Salem Ben Mohamedou provided invaluable logistical assistance during our stay in Zouérate. DMG geologists Baydi Thiam, Sid-Ahmed Bouderballa, and Abdoullah Samoury provided able field assistance. USGS colleagues Stuart Giles and Samantha Pascarelli provided help in drafting figures, and Klaus Schulz and John Slack provided reviews that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taylor, C.D. et al. (2016). The F’derik-Zouérate Iron District: Mesoarchean and Paleoproterozoic Iron Formation of the Tiris Complex, Islamic Republic of Mauritania. In: Bouabdellah, M., Slack, J. (eds) Mineral Deposits of North Africa. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-31733-5_21

Download citation

Publish with us

Policies and ethics