Skip to main content

Buckling of Sandwich Tube with Foam Core Under Combined Loading

  • Chapter
  • First Online:
Generalized Continua as Models for Classical and Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 42))

  • 913 Accesses

Abstract

In the framework of a general stability theory for three-dimensional bodies the buckling analysis is carried out for the nonlinearly elastic three-layer cylindrical tube subjected to axial compression under internal or external pressure. It is assumed that the middle layer (core) of the tube is made of metal or polymer foam, and to describe its behavior the model of micropolar continuum is used. Such approach allows to study in detail the influence of foam microstructure on the deformation stability, which is especially important when the macroscopic dimensions of the tube are comparable with the average size of the foam cells. The inner and outer layers (coatings) of the tube are assumed to be made of the classic non-polar materials. Applying linearization the neutral equilibrium equations have been derived, which describe the perturbed state of the cylindrical sandwich tube. By solving these equations numerically for some specific materials, the critical curves and corresponding buckling modes have been found and the stability regions have been constructed in the planes of loading parameters (relative axial compression and internal or external pressure). Using the obtained results, the influence of coatings properties, as well as the overall size of the tube, on the loss of stability has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenbach J, Altenbach H, Eremeyev VA (2010) On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch Appl Mech 80:73–92

    Article  MATH  Google Scholar 

  • Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Boston

    Google Scholar 

  • Banhart J (2000) Manufacturing routes for metallic foams. J Miner 52(12):22–27

    Google Scholar 

  • Banhart J, Ashby MF, Fleck NA (eds) (1999) Metal foams and porous metal structures. Verlag MIT Publishing, Bremen

    Google Scholar 

  • Cosserat E, Cosserat F (1909) Theorie des Corps Deformables. Hermann et Fils, Paris

    MATH  Google Scholar 

  • Degischer HP, Kriszt B (eds) (2002) Handbook of cellular metals. Production, processing, applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Eremeyev VA, Pietraszkiewicz W (2012) Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Struct 49(14):1993–2005

    Article  Google Scholar 

  • Eremeyev VA, Zubov LM (1994) On the stability of elastic bodies with couple-stresses. Mech Solids 29(3):172–181

    Google Scholar 

  • Eringen AC (1999) Microcontinuum field theory I. Foundations and solids. Springer, New York

    Book  MATH  Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge solid state science series. Cambridge University Press, Cambridge

    Google Scholar 

  • Green AE, Adkins JE (1960) Large elastic deformations and non-linear continuum mechanics. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Kafadar CB, Eringen AC (1971) Micropolar media - I. The classical theory. Int J Eng Sci 9:271–305

    Article  MATH  Google Scholar 

  • Lakes RS (1986) Experimental microelasticity of two porous solids. Int J Solids Struct 22:55–63

    Article  Google Scholar 

  • Lakes RS (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Muhlhaus H (ed) Continuum models for materials with micro-structure. Wiley, New York, pp 1–22

    Google Scholar 

  • Lurie AI (1990) Non-linear theory of elasticity. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Maugin GA (1998) On the structure of the theory of polar elasticity. Philos Trans R Soc Lond A 356:1367–1395

    Article  MathSciNet  MATH  Google Scholar 

  • Nikitin E, Zubov LM (1998) Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. J Elast 51:1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Ogden RW (1997) Non-linear elastic deformations. Dover, Mineola

    Google Scholar 

  • Pietraszkiewicz W, Eremeyev VA (2009a) On natural strain measures of the non-linear micropolar continuum. Int J Solids Struct 46:774–787

    Google Scholar 

  • Pietraszkiewicz W, Eremeyev VA (2009b) On vectorially parameterized natural strain measures of the non-linear cosserat continuum. Int J Solids Struct 46(11–12):2477–2480

    Google Scholar 

  • Sheydakov DN (2010) Stability of elastic cylindrical micropolar shells subject to combined loads. In: Pietraszkiewicz W, Kreja I (eds) Shell structures: theory and applications, vol 2. CRC Press, Boca Raton, pp 141–144

    Google Scholar 

  • Sheydakov DN (2011) Buckling of elastic composite rod of micropolar material subject to combined loads. In: Altenbach H, Erofeev V, Maugin G (eds) Mechanics of generalized continua – from micromechanical basics to engineering applications, vol 7. Advanced structured materials. Springer, Berlin, pp 255–271

    Google Scholar 

  • Toupin RA (1964) Theories of elasticity with couple-stress. Arch Ration Mech Anal 17:85–112

    Article  MathSciNet  MATH  Google Scholar 

  • Zubov LM (1997) Nonlinear theory of dislocations and disclinations in elastic bodies. Springer, Berlin

    MATH  Google Scholar 

  • Zubov LM, Sheidakov DN (2008) Instability of a hollow elastic cylinder under tension, torsion, and inflation. Trans ASME J Appl Mech 75(1):011002

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (grant number 14-19-01676).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis N. Sheydakov .

Editor information

Editors and Affiliations

Appendix: Derivation of Neutral Equilibrium Equations

Appendix: Derivation of Neutral Equilibrium Equations

With respect to the representations (3), (4), (6) and (22), the expressions for the linearized stretch tensors \({{{\mathbf {\mathsf{{Y}}}}}}^\bullet \), \({{{\mathbf {\mathsf{{U}}}}}}^\bullet _{-}\) and \({{{\mathbf {\mathsf{{U}}}}}}^\bullet _{+}\), and wryness tensor \({{{\mathbf {\mathsf{{L}}}}}}^\bullet \) have the form:

$$\begin{aligned} {{{{\mathbf {\mathsf{{Y}}}}}}}^\bullet&=\left( {\frac{\partial v_\varPhi }{\partial r}-{f}^{\prime }\omega _Z } \right) {\vec {e}}_r \otimes {\vec {e}}_\varphi + \frac{1}{r}\left( {\frac{\partial v_R }{\partial \varphi }-v_\varPhi +f \omega _Z } \right) {\vec {e}}_\varphi \otimes {\vec {e}}_r \nonumber \\&\quad +\left( {\frac{\partial v_Z }{\partial r}+{f}^{\prime } \omega _\varPhi } \right) {\vec {e}}_r \otimes {\vec {e}}_z + \left( {\frac{\partial v_R }{\partial z}-\alpha \omega _\varPhi } \right) {\vec {e}}_z \otimes {\vec {e}}_r \nonumber \\&\quad +\frac{1}{r}\left( {\frac{\partial v_Z }{\partial \varphi }-f \omega _R } \right) {\vec {e}}_\varphi \otimes {\vec {e}}_z + \left( {\frac{\partial v_\varPhi }{\partial z}+\alpha \omega _R } \right) {\vec {e}}_z \otimes {\vec {e}}_\varphi \nonumber \\&\quad +\frac{\partial v_R }{\partial r}{\vec {e}}_r \otimes {\vec {e}}_r +\frac{1}{r}\left( {\frac{\partial v_\varPhi }{\partial \varphi }+v_R } \right) {\vec {e}}_\varphi \otimes {\vec {e}}_\varphi +\frac{\partial v_Z }{\partial z}{\vec {e}}_z \otimes {\vec {e}}_z, \end{aligned}$$
(25)
$$\begin{aligned} {{{{\mathbf {\mathsf{{U}}}}}}}_\pm ^\bullet&=\frac{\partial v_R^\pm }{\partial r}{\vec {e}}_r \otimes {\vec {e}}_r +\frac{1}{r}\left( {\frac{\partial v_\varPhi ^\pm }{\partial \varphi }+v_R^\pm } \right) {\vec {e}}_\varphi \otimes {\vec {e}}_\varphi +\frac{\partial v_Z^\pm }{\partial z}{\vec {e}}_z \otimes {\vec {e}}_z \nonumber \\&\quad +\frac{1}{rf_\pm ^\prime +f_\pm }\left( {f_\pm ^\prime \left( {\frac{\partial v_R^\pm }{\partial \varphi }-v_\varPhi ^\pm } \right) +f_\pm \frac{\partial v_\varPhi ^\pm }{\partial r}} \right) \left( {{\vec {e}}_r \otimes {\vec {e}}_\varphi +{\vec {e}}_\varphi \otimes {\vec {e}}_r } \right) \nonumber \\&\quad +\frac{1}{f_\pm ^\prime +\alpha }\left( {f_\pm ^\prime \frac{\partial v_R^\pm }{\partial z}+\alpha \frac{\partial v_Z^\pm }{\partial r}} \right) \left( {{\vec {e}}_r \otimes {\vec {e}}_z +{\vec {e}}_z \otimes {\vec {e}}_r } \right) \nonumber \\&\quad +\frac{1}{f_\pm +\alpha r}\left( {f_\pm \frac{\partial v_\varPhi ^\pm }{\partial z}+\alpha \frac{\partial v_Z^\pm }{\partial \varphi }} \right) \left( {{\vec {e}}_z \otimes {\vec {e}}_\varphi +{\vec {e}}_\varphi \otimes {\vec {e}}_z } \right) , \end{aligned}$$
(26)
$$\begin{aligned} {{{{\mathbf {\mathsf{{L}}}}}}}^\bullet&=\frac{\partial \omega _R }{\partial r}{\vec {e}}_r \otimes {\vec {e}}_r + \frac{1}{r}\left( {\frac{\partial \omega _\varPhi }{\partial \varphi }+\omega _R } \right) {\vec {e}}_\varphi \otimes {\vec {e}}_\varphi +\frac{\partial \omega _Z }{\partial z}{\vec {e}}_z \otimes {\vec {e}}_z \nonumber \\&\quad +\frac{\partial \omega _\varPhi }{\partial r}{\vec {e}}_r \otimes {\vec {e}}_\varphi +\frac{1}{r}\left( {\frac{\partial \omega _R }{\partial \varphi }-\omega _\varPhi } \right) {\vec {e}}_\varphi \otimes {\vec {e}}_r + \frac{\partial \omega _Z }{\partial r}{\vec {e}}_r \otimes {\vec {e}}_z \nonumber \\&\quad + \frac{\partial \omega _R }{\partial z}{\vec {e}}_z \otimes {\vec {e}}_r +\frac{1}{r}\frac{\partial \omega _Z }{\partial \varphi }{\vec {e}}_\varphi \otimes {\vec {e}}_z +\frac{\partial \omega _\varPhi }{\partial z}{\vec {e}}_z \otimes {\vec {e}}_\varphi . \end{aligned}$$
(27)

According to the relations (3), (5), (6), (15)–(17), (22), (25)–(27), the linearized Piola-type stress tensor \({{{\mathbf {\mathsf{{D}}}}}}^\bullet \) and couple stress tensor \({{{\mathbf {\mathsf{{G}}}}}}^\bullet \), and the linearized Piola stress tensors \({{{\mathbf {\mathsf{{D}}}}}}_{-}^\bullet \) and \({{{\mathbf {\mathsf{{D}}}}}}_{+}^\bullet \) are written as follows:

$$\begin{aligned} {{{{\mathbf {\mathsf{{D}}}}}}}^\bullet&=\left[ \left( {\zeta +\tau } \right) \frac{\partial v_R }{\partial r}\,\,+\frac{\lambda }{r}\left( {\frac{\partial v_\varPhi }{\partial \varphi }+v_R } \right) +\lambda \frac{\partial v_Z }{\partial z} \right] {\vec {e}}_r \otimes {\vec {e}}_R \nonumber \\&\quad +\left[ \tau \frac{\partial v_\varPhi }{\partial r}+\frac{\mu }{r}\!\left( {\frac{\partial v_R }{\partial \varphi }-v_\varPhi }\!\right) \!+B_3 \omega _Z \right] {\vec {e}}_r \otimes {\vec {e}}_\varPhi \nonumber \\&\quad +\left[ \tau \frac{\partial v_Z }{\partial r}+\mu \frac{\partial v_R }{\partial z}-B_2\omega _\varPhi \right] {\vec {e}}_r \otimes {\vec {e}}_Z +\left[ \tau \frac{\partial v_R }{\partial z}+\mu \frac{\partial v_Z }{\partial r}+B_2\omega _\varPhi \right] {\vec {e}}_z \otimes {\vec {e}}_R \nonumber \\&\quad +\left[ \frac{\tau }{r}\!\left( {\frac{\partial v_R }{\partial \varphi }-v_\varPhi } \right) +\mu \frac{\partial v_\varPhi }{\partial r}-B_3 \omega _Z \right] {\vec {e}}_\varphi \otimes {\vec {e}}_R \nonumber \\&\quad +\left[ \lambda \frac{\partial v_R }{\partial r}\,\,+\frac{\zeta +\tau }{r}\left( {\frac{\partial v_\varPhi }{\partial \varphi }+v_R } \right) +\lambda \frac{\partial v_Z }{\partial z} \right] {\vec {e}}_\varphi \otimes {\vec {e}}_\varPhi \nonumber \\&\quad +\left[ \frac{\tau }{r}\frac{\partial v_Z }{\partial \varphi }+\mu \frac{\partial v_\varPhi }{\partial z}+B_1 \omega _R \right] {\vec {e}}_\varphi \otimes {\vec {e}}_Z + \left[ \tau \frac{\partial v_\varPhi }{\partial z}+\frac{\mu }{r}\frac{\partial v_Z }{\partial \varphi }-B_1\omega _R \right] {\vec {e}}_z \otimes {\vec {e}}_\varPhi \nonumber \\&\quad +\left[ \lambda \frac{\partial v_R }{\partial r}\,\,+\frac{\lambda }{r}\left( {\frac{\partial v_\varPhi }{\partial \varphi }+v_R } \right) +\left( {\zeta +\tau } \right) \frac{\partial v_Z }{\partial z} \right] {\vec {e}}_z \otimes {\vec {e}}_Z, \end{aligned}$$
(28)
$$\begin{aligned} {{{{\mathbf {\mathsf{{G}}}}}}}^\bullet&=\left[ (\gamma +\gamma _2)\frac{\partial \omega _R }{\partial r}\,\,+\frac{\gamma _1 }{r}\left( {\frac{\partial \omega _\varPhi }{\partial \varphi }+\omega _R } \right) +\gamma _1 \frac{\partial \omega _Z }{\partial z} \right] {\vec {e}}_r \otimes {\vec {e}}_R \nonumber \\&\quad +\left[ \gamma _2 \frac{\partial \omega _\varPhi }{\partial r}+\frac{\gamma _3 }{r}\left( {\frac{\partial \omega _R }{\partial \varphi }-\omega _\varPhi } \right) \right] {\vec {e}}_r \otimes {\vec {e}}_\varPhi \nonumber \\&\quad +\left[ \gamma _2 \frac{\partial \omega _Z }{\partial r}+\gamma _3 \frac{\partial \omega _R }{\partial z} \right] {\vec {e}}_r \otimes {\vec {e}}_Z +\left[ \gamma _2 \frac{\partial \omega _R }{\partial z}+\gamma _3 \frac{\partial \omega _Z }{\partial r} \right] {\vec {e}}_z \otimes {\vec {e}}_R \nonumber \\&\quad +\left[ \frac{\gamma _2 }{r}\left( {\frac{\partial \omega _R }{\partial \varphi }-\omega _\varPhi } \right) +\gamma _3 \frac{\partial \omega _\varPhi }{\partial r} \right] {\vec {e}}_\varphi \otimes {\vec {e}}_R \nonumber \\&\quad +\left[ \gamma _1 \frac{\partial \omega _R }{\partial r}\,\,+\frac{\gamma +\gamma _2 }{r}\left( {\frac{\partial \omega _\varPhi }{\partial \varphi }+\omega _R } \right) +\gamma _1 \frac{\partial \omega _Z }{\partial z} \right] {\vec {e}}_\varphi \otimes {\vec {e}}_\varPhi \nonumber \\&\quad +\left[ \frac{\gamma _2 }{r}\frac{\partial \omega _Z }{\partial \varphi }+\gamma _3 \frac{\partial \omega _\varPhi }{\partial z} \right] {\vec {e}}_\varphi \otimes {\vec {e}}_Z +\left[ \gamma _2 \frac{\partial \omega _\varPhi }{\partial z}+\frac{\gamma _3 }{r}\frac{\partial \omega _Z }{\partial \varphi } \right] {\vec {e}}_z \otimes {\vec {e}}_\varPhi \nonumber \\&\quad +\left[ \gamma _1 \frac{\partial \omega _R }{\partial r}\,\,+\frac{\gamma _1 }{r}\left( {\frac{\partial \omega _\varPhi }{\partial \varphi }+\omega _R } \right) +(\gamma +\gamma _2 )\frac{\partial \omega _Z }{\partial z} \right] {\vec {e}}_z \otimes {\vec {e}}_Z, \end{aligned}$$
(29)
$$\begin{aligned} {{{{\mathbf {\mathsf{{D}}}}}}}_\pm ^\bullet&=\left[ \left( {\zeta _\pm +\mu _\pm } \right) \frac{\partial v_R^\pm }{\partial r}\,\,+\frac{\lambda _\pm }{r}\left( {\frac{\partial v_\varPhi ^\pm }{\partial \varphi }+v_R^\pm } \right) +\lambda _\pm \frac{\partial v_Z^\pm }{\partial z} \right] {\vec {e}}_r \otimes {\vec {e}}_R \nonumber \\&\quad +\left[ \left( {\mu _\pm +B^{\pm }_3} \right) \,\frac{\partial v_\varPhi ^\pm }{\partial r}+\frac{\mu _\pm - B^{\pm }_3}{r}\left( {\frac{\partial v_R^\pm }{\partial \varphi }-v_\varPhi ^\pm } \right) \right] {\vec {e}}_r \otimes {\vec {e}}_\varPhi \nonumber \\&\quad +\left[ \left( {\mu _\pm +B^{\pm }_2} \right) \frac{\partial v_Z^\pm }{\partial r}+\left( {\mu _\pm -B^{\pm }_2} \right) \frac{\partial v_R^\pm }{\partial z} \right] {\vec {e}}_r \otimes {\vec {e}}_Z \nonumber \\&\quad +\left[ \frac{\mu _\pm + B^{\pm }_3}{r}\left( {\frac{\partial v_R^\pm }{\partial \varphi }-v_\varPhi ^\pm } \right) +\left( {\mu _\pm -B^{\pm }_3} \right) \frac{\partial v_\varPhi ^\pm }{\partial r} \right] {\vec {e}}_\varphi \otimes {\vec {e}}_R \nonumber \\&\quad +\left[ \lambda _\pm \frac{\partial v_R^\pm }{\partial r}\,\,+\frac{\zeta _\pm +\mu _\pm }{r}\left( {\frac{\partial v_\varPhi ^\pm }{\partial \varphi }+v_R^\pm } \right) +\lambda _\pm \frac{\partial v_Z^\pm }{\partial z} \right] {\vec {e}}_\varphi \otimes {\vec {e}}_\varPhi \nonumber \\&\quad +\left[ \frac{\mu _\pm + B^{\pm }_1}{r}\frac{\partial v_Z^\pm }{\partial \varphi }+\left( {\mu _\pm -B^{\pm }_1} \right) \frac{\partial v_\varPhi ^\pm }{\partial z} \right] {\vec {e}}_\varphi \otimes {\vec {e}}_Z \nonumber \\&\quad +\left[ \left( {\mu _\pm +B^{\pm }_2} \right) \frac{\partial v_R^\pm }{\partial z}+\left( {\mu _\pm -B^{\pm }_2} \right) \frac{\partial v_Z^\pm }{\partial r} \right] {\vec {e}}_z \otimes {\vec {e}}_R \nonumber \\&\quad +\left[ \left( {\mu _\pm +B^{\pm }_1} \right) \frac{\partial v_\varPhi ^\pm }{\partial z}+\frac{\mu _\pm - B^{\pm }_1}{r}\frac{\partial v_Z^\pm }{\partial \varphi } \right] {\vec {e}}_z \otimes {\vec {e}}_\varPhi \nonumber \\&\quad +\left[ \lambda _\pm \frac{\partial v_R^\pm }{\partial r}\,\,+\frac{\lambda _\pm }{r}\left( {\frac{\partial v_\varPhi ^\pm }{\partial \varphi }+v_R^\pm } \right) +\left( {\zeta _\pm +\mu _\pm } \right) \frac{\partial v_Z^\pm }{\partial z} \right] {\vec {e}}_z \otimes {\vec {e}}_Z. \end{aligned}$$
(30)

Here the following notations are used:

$$\begin{aligned} \zeta =\lambda +\mu , \quad \zeta _\pm =\lambda _\pm +\mu _\pm , \quad \tau =\mu +\kappa , \quad \gamma =\gamma _1 +\gamma _3, \quad \xi =n^2+r^2\beta ^2+1, \end{aligned}$$
$$\begin{aligned} B_1= & {} \mu \left( {\frac{f}{r} +\alpha } \right) +\lambda s-\chi , \qquad B_1^\pm =\mu _\pm +\frac{\left( \lambda _\pm s_\pm - 2 \mu _\pm \right) r}{f_\pm +\alpha r},\\ B_2= & {} \mu \left( {{f}^{\prime } +\alpha } \right) +\lambda s-\chi , \qquad \;\; B_2^\pm =\mu _\pm +\frac{ \lambda _\pm s_\pm - 2 \mu _\pm }{f^\prime _\pm +\alpha }, \\ B_3= & {} \mu \left( {{f}^{\prime }+\frac{f}{r}} \right) +\lambda s-\chi , \qquad B_3^\pm =\mu _\pm +\frac{\left( \lambda _\pm s_\pm - 2 \mu _\pm \right) r}{r f^\prime _\pm + f_\pm }. \end{aligned}$$

By taking into account the expressions (4), (9), (22)–(24), (28)–(30), we derive a neutral equilibrium equations (14):

$$\begin{aligned}&\left( \zeta +\tau \right) V^{\prime \prime }_{R} +\frac{\zeta +\tau }{r} V^{\prime }_{R} -\frac{\zeta +\tau \xi }{r^{2} } V_{R} +\frac{n\zeta }{r} V^{\prime }_{\varPhi } -\frac{n\left( \zeta +2\tau \right) }{r^{2} } V_{\varPhi } \nonumber \\&\quad +\beta \zeta V^{\prime }_{Z} +\beta B_{2} \varOmega _{\varPhi } -\frac{nB_{3} }{r} \varOmega _{Z} = 0, \nonumber \\&\tau V^{\prime \prime }_{\varPhi } -\frac{n\zeta }{r} V^{\prime }_{R} -\frac{n\left( \zeta +2\tau \right) }{r^{2} } V_{R} +\frac{\tau }{r} V^{\prime }_{\varPhi } -\frac{\zeta n^{2} +\tau \xi }{r^{2} } V_{\varPhi } -\frac{n\beta \zeta }{r} V_{Z} \nonumber \\&\quad -\beta B_{1} \varOmega _{R} +B^{\prime }_{3} \varOmega _{Z} +B_{3} \varOmega ^{\prime }_{Z} =0, \nonumber \\&\tau V^{\prime \prime }_{Z} -\beta \zeta V^{\prime }_{R} -\frac{\beta \zeta }{r} V_{R} -\frac{n\beta \zeta }{r} V_{\varPhi } +\frac{\tau }{r} V^{\prime }_{Z} -\left( \zeta \beta ^{2} +\frac{\xi -1}{r^{2} } \tau \right) V_{Z} \nonumber \\&\quad +\frac{nB_{1} }{r} \varOmega _{R} -B_{2} \varOmega ^{\prime }_{\varPhi } -\left( B^{\prime }_{2} +\frac{B_{2} }{r} \right) \varOmega _{\varPhi } =0, \nonumber \\&\left( \gamma +\gamma _{2} \right) \left( \varOmega ^{\prime \prime }_{R} +\frac{\varOmega ^{\prime }_{R} }{r} \right) -\left[ \frac{\gamma +\gamma _{2} \xi }{r^{2} } -\left( \frac{f}{r} +\alpha \right) B_{1} \right] \varOmega _{R} -\beta B_{1} V_{\varPhi } \nonumber \\&\quad +\frac{nB_{1} }{r} V_{Z} +\frac{n\left( \gamma +2\gamma _{2} \right) }{r^{2} } \varOmega _{\varPhi } -\frac{n\gamma }{r} \varOmega ^{\prime }_{\varPhi } -\beta \gamma \varOmega ^{\prime }_{Z} =0, \nonumber \\&\gamma _{2} \varOmega ^{\prime \prime }_{\varPhi } +\frac{\gamma _{2} }{r} \varOmega ^{\prime }_{\varPhi } -\left[ \frac{\gamma n^{2} +\gamma _{2} \xi }{r^{2} } -\left( f^{\prime } +\alpha \right) B_{2} \right] \varOmega _{\varPhi } +B_{2} V^{\prime }_{Z} +\beta B_{2} V_{R} \nonumber \\&\quad +\frac{n\gamma }{r} \varOmega ^{\prime }_{R} +\frac{n\left( \gamma +2\gamma _{2} \right) }{r^{2} } \varOmega _{R} -\frac{n\beta \gamma }{r} \varOmega _{Z} =0, \end{aligned}$$
(31)
$$\begin{aligned}&\gamma _{2} \varOmega ^{\prime \prime }_{Z} -\left[ \gamma \beta ^{2} +\frac{\xi -1}{r^{2} } \gamma _{2} -B_{3} \left( f^{\prime } +\frac{f}{r} \right) \right] \varOmega _{Z} -B_{3} \left( \frac{n}{r} V_{R} +V^{\prime }_{\varPhi } +\frac{V_{\varPhi } }{r} \right) \nonumber \\&\quad +\frac{\gamma _{2} }{r} \varOmega ^{\prime }_{Z} +\beta \gamma \left( \varOmega ^{\prime }_{R} +\frac{\varOmega _{R} }{r} -\frac{n}{r} \varOmega _{\varPhi } \right) =0, \nonumber \\&\left( \zeta _{\pm } +\mu _{\pm } \right) \left[ \left( V_{R}^{\pm } \right) ^{{^{\prime \prime }} } +\frac{\left( V_{R}^{\pm } \right) ^{\prime } }{r} \right] -\frac{1}{r^{2} } \left( \zeta _{\pm } +\xi \mu _{\pm } +\beta ^{2} r^{2} B_{2}^{\pm } +n^{2} B_{3}^{\pm } \right) V_{R}^{\pm } \nonumber \\&\quad +\frac{n}{r} \left( \zeta _{\pm } -B_{3}^{\pm } \right) \left( V_{\varPhi }^{\pm } \right) ^{{^{\prime }} } -\frac{n}{r^{2} } \left( \zeta _{\pm } +2\mu _{\pm } +B_{3}^{\pm } \right) V_{\varPhi }^{\pm } +\beta \left( \zeta _{\pm } -B_{2}^{\pm } \right) \left( V_{Z}^{\pm } \right) ^{{^{\prime }} } =0, \nonumber \\&\left( \mu _{\pm } +B_{3}^{\pm } \right) \left[ \left( V_{\varPhi }^{\pm } \right) ^{{^{\prime \prime }} } +\frac{\left( V_{\varPhi }^{\pm } \right) ^{{^{\prime }} } }{r} \right] -\frac{1}{r^{2} } \left( n^{2}\zeta _{\pm } +\xi \mu _{\pm } +B_{3}^{\pm } +\beta ^{2} r^{2} B_{1}^{\pm } \right) V_{\varPhi }^{\pm } \nonumber \\&\quad -\frac{n}{r} \left( \zeta _{\pm } -B_{3}^{\pm } \right) \left( V_{R}^{\pm } \right) ^{{^{\prime }} } -\frac{n}{r^{2} } \left( \zeta _{\pm } +2\mu _{\pm } +B_{3}^{\pm } \right) V_{R}^{\pm } -\frac{n\beta }{r} \left( \zeta _{\pm } -B_{1}^{\pm } \right) V_{Z}^{\pm } =0, \nonumber \\&\left( \mu _{\pm } +B_{2}^{\pm } \right) \left( V_{Z}^{\pm } \right) ^{{^{\prime \prime }} } + \left( \frac{\mu _{\pm }}{r} +\frac{1}{f^{\prime }_{\pm } +\alpha } \left[ B_{1}^{\pm } \frac{f_{\pm } +\alpha r}{r^2} -B_{2}^{\pm } f^{\prime \prime }_{\pm } \right] \right) \left( V_{Z}^{\pm } \right) ^{{^{\prime }} } \nonumber \\&\quad -\beta \left( \zeta _{\pm } -B_{2}^{\pm } \right) \left( V_{R}^{\pm } \right) ^{{^{\prime }} } -\beta \left( \frac{\zeta _{\pm }}{r} -\frac{1}{f^{\prime }_{\pm } +\alpha } \left[ B_{1}^{\pm } \frac{f_{\pm } +\alpha r}{r^2} -B_{2}^{\pm } f^{\prime \prime }_{\pm } \right] \right) V_{R}^{\pm } \nonumber \\&\quad -\frac{n\beta }{r} \left( \zeta _{\pm } -B_{1}^{\pm } \right) V_{\varPhi }^{\pm } -\left( \left[ \zeta _{\pm } +\mu _{\pm } \right] \beta ^{2} +\frac{n^{2} }{r^{2} } \left[ \mu _{\pm } +B_{1}^{\pm } \right] \right) V_{Z}^{\pm } =0. \nonumber \end{aligned}$$

Given the substitutions (23) and (24), the expressions for the linearized boundary conditions (18) take the form:

  • on the inner and outer surfaces of the tube \(\left( {r=r_{\pm } } \right) \)

    $$\begin{aligned} \left( \zeta _{\pm }\! +\!\mu _{\pm } \right) \left( V_{R}^{\pm } \right) ^{\prime } \!+\!\frac{\lambda _{\pm }\! +\!\alpha p_{\pm } }{r_{\pm } } \left( V_{R}^{\pm }\! +\!nV_{\varPhi }^{\pm } \right) \!+\! \beta \left( \lambda _{\pm } \!+\!\frac{f_{\pm } }{r_{\pm } } p_{\pm } \right) V_{Z}^{\pm }= & {} 0, \nonumber \\ \frac{\alpha p_{\pm } +B_{3}^{\pm } -\mu _{\pm } }{r_{\pm } } \left( nV_{R}^{\pm } +V_{\varPhi }^{\pm } \right) +\left( \mu _{\pm } +B_{3}^{\pm } \right) \left( V_{\varPhi }^{\pm } \right) ^{\prime }= & {} 0,\qquad \\ \beta \left( \frac{f_{\pm } }{r_{\pm } } p_{\pm } +B_{2}^{\pm } -\mu _{\pm } \right) V_{R}^{\pm } +\left( \mu _{\pm } +B_{2}^{\pm } \right) \left( V_{\mathrm{Z}}^{\pm } \right) ^{\prime }= & {} 0, \nonumber \end{aligned}$$
    (32)
  • on the interfaces between the coatings and the foam core \(\left( {r=c_{\pm } } \right) \)

    $$\begin{aligned}&\left( \zeta _{\pm } +\mu _{\pm } \right) \left( V_{R}^{\pm } \right) ^{\prime } +\frac{\lambda _{\pm } }{c_{\pm } } \left( V_{R}^{\pm } +nV_{\varPhi }^{\pm } \right) +\beta \lambda _{\pm } V_{Z}^{\pm } - \left( \zeta +\tau \right) V^\prime _{R} \nonumber \\&\quad -\frac{\lambda }{c_{\pm } } \left( V_{R} +nV_{\varPhi } \right) -\beta \lambda V_{Z} =0, \nonumber \\&\frac{B_{3}^{\pm } -\mu _{\pm } }{c_{\pm } } \left( nV_{R}^{\pm } +V_{\varPhi }^{\pm } \right) +\left( \mu _{\pm } +B_{3}^{\pm } \right) \left( V_{\varPhi }^{\pm } \right) ^{\prime } -\tau V^\prime _{\varPhi } \nonumber \\&\quad + \frac{\mu }{c_{\pm } } \left( nV_{R} +V_{\varPhi } \right) -B_{3} \varOmega _{Z} =0, \\&\beta \left( B_{2}^{\pm } -\mu _{\pm } \right) V_{R}^{\pm } +\left( \mu _{\pm } +B_{2}^{\pm } \right) \left( V_{\mathrm{Z}}^{\pm } \right) ^{\prime } + \mu \beta V_{R} -\tau V^\prime _{Z} +B_{2} \varOmega _{\varPhi } =0, \nonumber \\&\left( \gamma +\gamma _{2} \right) \varOmega ^\prime _{R} +\frac{\gamma _{1} }{c_{\pm } } \left( \varOmega _{R} -n\varOmega _{\varPhi } \right) -\gamma _{1} \beta \varOmega _{Z} =0, \nonumber \\&\frac{\gamma _{3} }{c_{\pm } } \left( n\varOmega _{R} -\varOmega _{\varPhi } \right) +\gamma _{2} \varOmega ^\prime _{\varPhi } =0, \qquad \gamma _{3} \beta \varOmega _{R} +\gamma _{2} \varOmega ^\prime _{Z} =0, \nonumber \\&v_{R} -v_{R}^{\pm } =0, \qquad v_{\varPhi } -v_{\varPhi }^{\pm } =0, \qquad v_{Z} -v_{Z}^{\pm } =0. \nonumber \end{aligned}$$
    (33)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sheydakov, D.N., Sheydakov, N.E. (2016). Buckling of Sandwich Tube with Foam Core Under Combined Loading. In: Altenbach, H., Forest, S. (eds) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-31721-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31721-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31719-9

  • Online ISBN: 978-3-319-31721-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics