Skip to main content

Applications of Higher-Order Continua to Size Effects in Bending: Theory and Recent Experimental Results

  • Chapter
  • First Online:
Generalized Continua as Models for Classical and Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 42))

Abstract

In the context of static elasticity theory for isotropic materials under small deformations, different approaches of higher-order continuum mechanics are described. Considering generalized continua, the strain gradient-, micropolar- and surface elasticity theory are explained. Analytical solutions, such as the bending line, are derived for each extended theory, using the Euler–Bernoulli beam model. Atomic Force Microscopy investigations of the materials epoxy and the polymer SU-8, as well as flexural vibration analysis of aluminum foams were performed, to determine several additional material parameters. As a result, positive as well as negative size effects in dependency of the thickness and length are observed for micro-cantilevers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The displacement gradient is constant over the body.

  2. 2.

    www.nanonics.co.il, Jerusalem, Israel.

  3. 3.

    Physikalisch-Technische Bundesanstalt – Braunschweig, Germany.

References

  • Altenbach J, Altenbach H, Eremeyev VA (2010) On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch Appl Mech 80:73–92

    Article  MATH  Google Scholar 

  • Bertram A (2015) Finite gradient elasticity and plasticity: a constitutive mechanical framework. Contin Mech Thermodyn 27(6):1039–1058

    Article  MathSciNet  Google Scholar 

  • Carpinteri A (1994) Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech Mater 18(2):89–101, (Special issue on microstructure and strain localization in geomaterials)

    Google Scholar 

  • Chong CM (2002) Experimental investigation and modeling of size effect in elasticity. Phd thesis, Hong Kong University of Science and Technology

    Google Scholar 

  • Cosserat E, Cosserat F (1909) Theorie des Corps Deformables. Hermann et Fils, Paris

    MATH  Google Scholar 

  • Cuenot S, Demoustier-Champagne S, Nysten B (2000) Elastic modulus of polypyrrole nanotubes. Phys Rev Lett 85(8):1690–1693

    Article  Google Scholar 

  • Cuenot S, Fretigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:01–05

    Article  Google Scholar 

  • Eremeyev VA, Lebedev LP, Altenbach H (2013) Foundations of micropolar mechanics. Springer, Heidelberg

    Google Scholar 

  • Eringen AC (1966) A unified theory of thermomechanical materials. Int J Eng Sci 4:179–202

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1976) Continuum Physics, vol IV—Polar and nonlocal field theories. Academic Press, New York

    Google Scholar 

  • Eringen AC (1999) Microcontinuum field theories, vol I—Foundations and solids. Springer, New York

    Google Scholar 

  • Eringen AC (2010) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  • Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 33. Academic Press, New York, pp 295–361

    Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

    Article  Google Scholar 

  • Flügge W (1972) Tensor analysis and continuum mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh Braunschweig Wiss Ges 10:195–213

    MATH  Google Scholar 

  • Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    Article  MathSciNet  MATH  Google Scholar 

  • Javili A, McBride A, Steinmann P (2013) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):1–31

    Article  Google Scholar 

  • Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73(235):409

    Google Scholar 

  • Klimek M (2001) Fractional sequential mechanics—models with symmetric fractional derivative. Czechoslovak J Phys 51:1348–1354

    Article  MathSciNet  MATH  Google Scholar 

  • Koiter WT (1964) Couple-stresses in the theory of elasticity. Pt. I-II. Proc Koninkl Nederland Akad Wetensh 67:17–44

    MATH  Google Scholar 

  • Kong S, Zhou S, Nie Z, Wang K (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47(4):487–498

    Article  MathSciNet  MATH  Google Scholar 

  • Lakes R (1995) Experimental methods for study of cosserat elastic solids and other generalized elastic continua. In: Mühlhaus H (ed) Continuum models for materials with micro-structure. Wiley, New York, pp 1–22

    Google Scholar 

  • Lam DCC, Yang F, Chong CM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  • Liebold C, Müller WH (2015) Are microcontinuum field theories of elasticity amenable to experiments?—A review of some recent results (in press). In: Knops RJ, Chen GQ, Grinfeld M (eds) Springer proceedings in mathematics and statistics (PROMS), differential geometry and continuum mechanics, Springer, Heidelberg

    Google Scholar 

  • Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7(3):121–124

    Article  Google Scholar 

  • Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10:853–863

    Article  Google Scholar 

  • Maugin GA, Metrikine AV (eds) (2010) Mechanics of generalized continua—one hundred years after the cosserats, advances in mechanics and mathematics, vol 21. Springer, Heidelberg

    Google Scholar 

  • McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060–1067

    Article  Google Scholar 

  • Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147

    Article  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    Article  MATH  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Nikolov S, Han CS, Raabe D (2007) On the origin of size effects in small-strain elasticity of solid polymers. Int J Solids Struct 44(5):1582–1592

    Article  MATH  Google Scholar 

  • Nowacki W (1970) Theory of micropolar elasticity, CISM Courses, vol 25. Springer, Vienna

    Google Scholar 

  • Orowan E (1970) Surface energy and surface tension in solids and liquids. Proc R Soc A 316(1527):473–491

    Article  Google Scholar 

  • Peddieson J, Buchanan GR, McNitt RP (1996) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305–312

    Article  Google Scholar 

  • Poncharal P, Wang ZL, Ugarte D, De Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283:1513–1516

    Article  Google Scholar 

  • Ru CQ (2010) Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci China Phys Mech Astron 53(3):536–544

    Article  MathSciNet  Google Scholar 

  • Sadeghian H, Yang CK, Goosen JFL, van der Drift E, Bossche A, French PJ, van Keulen F (2009) Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl Phys Lett 94(22):01–03

    Article  Google Scholar 

  • Salvetat JP, Andrew G, Briggs D, Bonard JM, Bacsa RR, Kulik AJ, Stöckli T, Burnham NA, Forró L (1999a) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944–947

    Article  Google Scholar 

  • Salvetat JP, Kulik AJ, Bonard JM, Briggs D, Stöckli T, Metenier K, Bonnamy S, Beguin F, Burnham NA, Forró L (1999b) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Phys Rev Lett 11:161–165

    Google Scholar 

  • Schaefer H (1967) Das Cosserat Kontinuum. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschriftü Angewandte Mathematik und Mechanik 47(8):485–498

    Google Scholar 

  • Shuttleworth R (1950) The surface tension of solids. Proc Phys Soc A 63(5):444–457

    Article  Google Scholar 

  • Smyshlyaev VP, Fleck NA (1996) The role of strain gradients in the grain size effect for polycrystals. J Mech Phys Solids 44(4):465–495

    Article  MathSciNet  MATH  Google Scholar 

  • Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7(12):3691–3697

    Article  Google Scholar 

  • Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 1:365–414

    MathSciNet  MATH  Google Scholar 

  • Varenberg M, Etsion I, Halperin G (2005) Nanoscale fretting wear study by scanning probe microscopy. Tribol Lett 18(4):493–498

    Article  Google Scholar 

  • Vermaak JS, Mays CW, Kuhlmann-Wilsdorf D (1968) On surface stress and surface tension: I. theoretical considerations. Surf Sci 12(2):128–133

    Article  Google Scholar 

  • Wang ZQ, Zhao YP, Huang ZP (2010) The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci 48(2):140–150

    Article  MathSciNet  Google Scholar 

  • Yang F, Chong CM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  • Yao H, Yun G, Bai N, Li J (2012) Surface elasticity effect on the size-dependent elastic property of nanowires. J Appl Phys 111(8):01–06

    Article  Google Scholar 

Download references

Acknowledgments

The present work is supported by (Deutsche Forschungsgemeinschaft) DFG under Grant MU 1752/33-1. The author like to thank the Fraunhofer Institute for Reliability and Microintegration Berlin for sample preparation and PTB-Braunschweig for AFM calibration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Liebold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liebold, C., Müller, W.H. (2016). Applications of Higher-Order Continua to Size Effects in Bending: Theory and Recent Experimental Results. In: Altenbach, H., Forest, S. (eds) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-31721-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31721-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31719-9

  • Online ISBN: 978-3-319-31721-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics