Skip to main content

An Improved Constitutive Model for Short Fibre Reinforced Cementitious Composites (SFRC) Based on the Orientation Tensor

  • Chapter
  • First Online:
Generalized Continua as Models for Classical and Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 42))

Abstract

Short fibre composites are becoming increasingly popular in many applications. This is also true for civil engineering, where short fibre cementitious composites are used more often. For the use in load bearing structures, a constitutive mapping is necessary to calculate the design load and to predict cracking behaviour. Here a constitutive mapping based on the use of isotropic tensor functions of the strain tensor and the orientation tensor is proposed. The model solves some issues of other approaches. A comparison with other constitutive mappings based on tensors is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenbach H, Naumenko K, L’vov G, Pilipenko SN (2003) Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics. Mech Compos Mater 39(3):221–234

    Google Scholar 

  • Baby F (2012) Contribution à l’identification et la prise en compte du comportement en traction des bfup à l’échelle de la structure (Contribution to identification of uhpfrc tensile constitutive behaviour and accounting for structural design). Ph.D. thesis, Université Paris-Est, in French

    Google Scholar 

  • Barragán BE, Gettu R, Martin MA, Zerbino RL (2003) Uniaxial tension test for steel fibre reinforced concrete - a parametric study. Cem Concr Compos 25(7):767–777

    Article  Google Scholar 

  • Bentur A, Mindess S (1990) Fibre reinforced cementitious composites. Spon, Routledge

    Google Scholar 

  • Bertram A (2005) Elasticity and plasticity of large deformations—an introduction. Springer, Heidelberg

    Google Scholar 

  • Eik M (2014) Orientation of short steel fibres in concrete: measuring and modelling. Ph.D. thesis, Institute of Cybernetics at Tallinn University of Technology, Faculty of Civil Engineering and Aalto University School of Engineering. http://digi.lib.ttu.ee/i/file.php?DLID=965

  • Eik M, Puttonen J (2011) Challenges of steel fibre reinforced concrete in load bearing structures. Rakenteiden Mekaniikka 44:44–64

    Google Scholar 

  • Eik M, Lõhmus K, Tigasson M, Listak M, Puttonen J, Herrmann H (2013) DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J Mater Sci 48(10):3745–3759

    Article  Google Scholar 

  • Eik M, Herrmann H, Puttonen J (2015a) Orthotropic constitutive model for steel fibre reinforced concrete: linear-elastic state and bases for the failure. In: Kouhia R, Mäkinen J, Pajunen S, Saksala T (eds) Proceedings of the XII Finnish mechanics days, 4–5 June 2015, Tampere, Finland, pp 255–260

    Google Scholar 

  • Eik M, Puttonen J, Herrmann H (2015b) An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos Struct 121:324–336. doi:10.1016/j.compstruct.2014.11.018

    Article  Google Scholar 

  • Eppenga R, Frenke D (1984) Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol Phys 52:1303–1334

    Article  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A: Math, Phys Eng Sci 241(1226):376–396

    Article  MathSciNet  MATH  Google Scholar 

  • Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. Ph.D. thesis, Technische Universiteit Delft

    Google Scholar 

  • Herrmann H, Eik M (2011) Some comments on the theory of short fibre reinforced material. Proc Est Acad Sci 60(3):179–183

    Article  Google Scholar 

  • Herrmann H, Eik M, Berg V, Puttonen J (2014) Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica 49(8):1985–2000

    Article  MathSciNet  MATH  Google Scholar 

  • Hess S (2015) Tensors for physics. Springer International Publishing, Heidelberg

    Google Scholar 

  • Hess S, Köhler W (1980) Formeln zur Tensor-Rechnung. Palm and Enke, Erlangen

    Google Scholar 

  • Itskov M (2009) Tensor algebra and tensor analysis for engineers, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Ju Y, Jia Y, Liu H, Chen J (2007) Mesomechanism of steel fiber reinforcement and toughening of reactive powder concrete. Sci China Ser E: Technol Sci 50(6):815–832

    Article  Google Scholar 

  • Lappa ES (2007) High strength fibre reinforced concrete: static and fatigue behaviour in bending. Ph.D. thesis, Technische Universiteit Delft. http://repository.tudelft.nl/view/ir/uuid:0f7ea161-1bbe-4d6b-b2bd-9adfae98323c/

  • Laranjeira de Oliveira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. Ph.D. thesis, Universitat Politecnica de Catalunya. http://www.tdx.cat/TDX-0602110-115910

  • Liefeith D, Kolling S (2007) An anisotropic material model for finite rubber viscoelasticity. 6. LS-DYNA Anwenderforum, Frankenthal 2007. http://www.dynamore.de/de/fortbildung/konferenzen/vergangene/forum07/material02/an-anisotropic-material-model-for-finite-rubber/view

  • Maier W, Saupe A (1959) Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase, Teil I. Zeitschrift für Naturforschung A - J Phys Sci 14a:882–889

    Google Scholar 

  • Maier W, Saupe A (1960) Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase, Teil II. Zeitschrift für Naturforschung A - J Phys Sci 15a:287–292

    Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  • Muschik W, Papenfuss C, Ehrentraut H (1996) Concepts of continuum thermodynamics. Kielce University of Technology, Technische Universität, Berlin

    MATH  Google Scholar 

  • Muschik W, Ehrentraut H, Papenfuss C (2000) Concepts of mesoscopic continuum physics with application to biaxial liquid crystals. J Non-Equilib Thermodyn 25:179–197

    Article  MATH  Google Scholar 

  • Pardowitz I, Hess S (1980) On the theory of irreversible processes in molecular liquids and liquid crystals, nonequilibrium phenomena associated with the second and fourth rank alignment tensors. Phys A: Stat Mech Appl 100(3):540–562

    Article  Google Scholar 

  • Smith G (1960) On the minimality of integrity bases for symmetric 3x3 matrices. Arch Ration Mech Anal 5:382–389

    Article  MATH  Google Scholar 

  • Spencer A (1961) The invariants of six symmetric 3x3 matrices. Arch Ration Mech Anal 7:64–77

    Article  MATH  Google Scholar 

  • Spencer A, Rivlin R (1959) Further results in the theory of matrix polynomials. Arch Ration Mech Anal 4:214–230

    Article  MathSciNet  MATH  Google Scholar 

  • Suuronen JP, Kallonen A, Eik M, Puttonen J, Serimaa R, Herrmann H (2013) Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using x-ray tomography. J Mater Sci 48(3):1358–1367

    Article  Google Scholar 

  • Svec O (2013) Flow modelling of steel fibre reinforced self-compacting concrete—simulating fibre orientation and mechanical properties. Ph.D. thesis, DTU, Department of Civil Engineering. http://www.byg.dtu.dk/english/~/media/Institutter/Byg/publikationer/PhD/byg-r289.ashx

  • Swamy R (1975) Fibre reinforcement of cement and concrete. Mater Struct 8(3):235–254

    Google Scholar 

  • Tejchman J, Kozicki J (2010) Experimental and theoretical investigations of steel-fibrous concrete. Springer series in geomechanics and geoengineering, 1st edn. Springer, Heidelberg

    Google Scholar 

  • Trüb MC (2011) Numerical modeling of high performance fiber reinforced cementitious composites. Ph.D. thesis, ETH Zurich. doi:10.3929/ethz-a-006620566

  • Truesdell C, Noll W (1965) The non-linear field theories of mechanics (die nicht-linearen feldtheorien der mechanik). In: Flügge S (ed) Encyclopedia of physics (Handbuch der Physik), vol III/3. Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union through the European Regional Development Fund, in particular through funding for the “Centre for Nonlinear Studies” as an Estonian national centre of excellence. The research was also supported by the Estonian Research Council grant PUT1146. I’d like to thank Marika Eik, Emiliano Pastorelli and Jari Puttonen for discussions and joint work on fibre orientation measurements and for the cooperation in developing the constitutive model based on the structural tensors (Eik et al. 2015b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herrmann, H. (2016). An Improved Constitutive Model for Short Fibre Reinforced Cementitious Composites (SFRC) Based on the Orientation Tensor. In: Altenbach, H., Forest, S. (eds) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-31721-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31721-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31719-9

  • Online ISBN: 978-3-319-31721-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics