Advertisement

Changes of Efficiency Over Time

  • Chiang Kao
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 240)

Abstract

The DEA technique measures efficiency in a relative manner, in that the performances of the DMUs in a group are compared with each other. The efficient ones may not be efficient when compared with the DMUs of other groups. Similarly, the inefficient ones may become efficient when compared with those of other groups. The efficiency measures for DMUs of different groups are thus not comparable.

Keywords

Input Vector Technical Change Output Vector Productivity Index Base Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abate M, Lijesen M, Pels E, Roelevelt A (2013) The impact of reliability on the productivity of railroad companies. Transport Res E Logist Transport Rev 51:41–49CrossRefGoogle Scholar
  2. Afsharian M, Heinz A (2015) The overall Malmquist index: a new approach for measuring productivity changes. Ann Oper Res 226:1–27CrossRefGoogle Scholar
  3. Aparicio J, Pastor JT, Zofio JL (2013) On the inconsistency of the Malmquist-Luenberger index. Eur J Oper Res 229:738–742CrossRefGoogle Scholar
  4. Arabi B, Munisamy S, Emrouznejad A (2015) A new slacks-based measure of Malmquist-Luenberger index in the presence of undesirable outputs. Omega 51:29–37CrossRefGoogle Scholar
  5. Asmild M, Tam F (2007) Estimating global frontier shifts and global Malmquist indices. J Prod Anal 27:137–148CrossRefGoogle Scholar
  6. Brennan S, Haelermans C, Ruggiero J (2014) Nonparametric estimation of education productivity incorporating nondiscretionary inputs with an application to Dutch schools. Eur J Oper Res 234:809–818CrossRefGoogle Scholar
  7. Briec W, Kerstens K (2009) Infeasibility and directional distance functions with application to the determinateness of the Luenberger productivity indicator. J Optim Theory Appl 141:55–73CrossRefGoogle Scholar
  8. Caves DW, Christensen LR, Diewert WE (1982) The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 50:1393–1414CrossRefGoogle Scholar
  9. Chambers RG, Chung Y, Färe R (1996) Benefit and distance functions. J Econ Theory 70:407–419CrossRefGoogle Scholar
  10. Chambers RG, Pope RD (1996) Aggregate productivity measures. Am J Agric Econ 78:1360–1365CrossRefGoogle Scholar
  11. Chang H, Choy HL, Cooper WW, Ruefli TW (2009) Using Malmquist indexes to measure changes in the productivity and efficiency of US accounting firms before and after the Sarbanes-Oxley Act. Omega 37:951–960CrossRefGoogle Scholar
  12. Chen Y, Du J, Huo J (2013) Super-efficiency based on a modified directional distance function. Omega 41:621–625CrossRefGoogle Scholar
  13. Chou YC, Shao BBM (2014) Total factor productivity growth in information technology services industries: a multi-theoretical perspective. Decis Support Syst 62:106–118CrossRefGoogle Scholar
  14. Chung YH, Färe R, Grosskopf S (1997) Productivity and undesirable outputs: a directional distance production approach. J Environ Manag 51:229–240CrossRefGoogle Scholar
  15. Färe R, Grosskopf S, Norris M, Zhang Z (1994) Productivity growth, technical progress, and efficiency change in industrialized countries. Am Econ Rev 84:66–83Google Scholar
  16. Färe R, Primont D (2003) Luenberger productivity indicators: aggregation across firms. J Prod Anal 20:425–435CrossRefGoogle Scholar
  17. Ghulam Y, Jaffry S (2015) Efficiency and productivity of the cement industry: Pakistani experience of deregulation and privatization. Omega 54:101–115CrossRefGoogle Scholar
  18. Guzman I, Morrow S (2007) Measuring efficiency and productivity in professional football teams: evidence from the English Premier League. CEJOR 15:309–328CrossRefGoogle Scholar
  19. Iliyasu A, Mohamed ZA, Hashim M (2015) Productivity growth, technical change and efficiency change of the Malaysian cage fish farming: an application of Malmquist productivity index approach. Aquac Int 23:1013–1024CrossRefGoogle Scholar
  20. Johidi G, Razavyan S, Tohidnia S (2012) A global Malmquist productivity index using data envelopment analysis. J Oper Res Soc 63:72–78CrossRefGoogle Scholar
  21. Kao C (2000) Measuring the performance improvement of Taiwan forests after reorganization. For Sci 46:577–584Google Scholar
  22. Kao C (2010) Malmquist productivity index based on common-weights DEA: the case of Taiwan forests after reorganization. Omega 38:484–491CrossRefGoogle Scholar
  23. Kao C, Liu ST (2014) Multi-period efficiency measurement in data envelopment analysis: the case of Taiwanese commercial banks. Omega 47:90–98CrossRefGoogle Scholar
  24. Kapelko M, Horta IM, Camanho AS, Lansink AO (2015) Measurement of input-specific productivity growth with an application to the construction industry in Spain and Portugal. Int J Prod Econ 166:64–71CrossRefGoogle Scholar
  25. Kapelko M, Lansink AO (2015) An international comparison of productivity change in the textile and clothing industry: a bootstrapped Malmquist index approach. Empir Econ 48:1499–1523CrossRefGoogle Scholar
  26. Kittelsen SAC, Winsnes BA, Anthun KS, Goude F, Hope O, Hakkinen U, Kalseth B, Kilsmark J, Medin E, Rehnberg C, Ratto H (2015) Decomposing the productivity differences between hospitals in the Nordic countries. J Prod Anal 43:281–293CrossRefGoogle Scholar
  27. Lansink AO, Stefanou S, Serra T (2015) Primal and dual dynamic Luenberger productivity indicators. Eur J Oper Res 241:555–563CrossRefGoogle Scholar
  28. Lee BL (2013) Productivity, technical and efficiency change in Singapore’s services sector, 2005 to 2008. Appl Econ 45:2023–2029CrossRefGoogle Scholar
  29. Lee CY, Johnson AL (2011) A decomposition of productivity change in the semiconductor manufacturing industry. Int J Prod Res 49:4761–4785CrossRefGoogle Scholar
  30. Luenberger DG (1992) Benefit functions and duality. J Math Econ 21:461–481CrossRefGoogle Scholar
  31. Mahlberg B, Sahoo BK (2011) Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application. Int J Prod Econ 131:721–726CrossRefGoogle Scholar
  32. Malmquist S (1953) Index numbers and indifference curves. Trabajos de Estatistica 4:209–242CrossRefGoogle Scholar
  33. Oh DH (2010) A global Malmquist-Luenberger productivity index. J Prod Anal 34:183–197CrossRefGoogle Scholar
  34. Pastor JT, Lovell CAK (2005) A global Malmquist productivity index. Econ Lett 88:266–271CrossRefGoogle Scholar
  35. Pastor JT, Lovell CAK (2007) Circularity of the Malmquist productivity index. Economic Theory 33:591–599CrossRefGoogle Scholar
  36. Shephard RW (1970) Theory of cost and production functions. Princeton University Press, Princeton, NJGoogle Scholar
  37. Sun JR, Zhang J, Zhang JH, Ma JH, Zhang YL (2015) Total factor productivity assessment of tourism industry: evidence from China. Asia Pac J Tourism Res 20:280–294CrossRefGoogle Scholar
  38. Zhang N, Choi Y (2013) Total factor carbon emission performance of fossil fuel power plants in China: a metafrontier non-radial Malmquist index analysis. Energ Econ 40:549–559CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Chiang Kao
    • 1
  1. 1.Department of Industrial and Information ManagementNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations