Alignment Aware Linked Data Compression

  • Amit Krishna JoshiEmail author
  • Pascal Hitzler
  • Guozhu Dong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9544)


The success of linked data has resulted in a large amount of data being generated in a standard RDF format. Various techniques have been explored to generate a compressed version of RDF datasets for archival and transmission purpose. However, these compression techniques are designed to compress a given dataset without using any external knowledge, either through a compact representation or removal of semantic redundancies present in the dataset. In this paper, we introduce a novel approach to compress RDF datasets by exploiting alignments present across various datasets at both instance and schema level. Our system generates lossy compression based on the confidence value of relation between the terms. We also present a comprehensive evaluation of the approach by using reference alignment from OAEI.


  1. 1.
    Bishop, B., Kiryakov, A., Ognyanov, D., Peikov, I., Tashev, Z., Velkov, R.: Factforge: a fast track to the web of data. Semant. Web 2(2), 157–166 (2011)Google Scholar
  2. 2.
    Cheatham, M., Hitzler, P.: Conference v2.0: an uncertain version of the OAEI conference benchmark. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 33–48. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Fernández, J.D., Gutierrez, C., Martínez-Prieto, M.A.: RDF compression: basic approaches. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1091–1092. ACM (2010)Google Scholar
  4. 4.
    Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange. Web Semant.: Sci. Serv. Agents on the World Wide Web 19, 22–41 (2013)CrossRefGoogle Scholar
  5. 5.
    Glaser, H., Jaffri, A., Millard, I.: Managing co-reference on the semantic web (2009)Google Scholar
  6. 6.
    Gracia, J., d’Aquin, M., Mena, E.: Large scale integration of senses for the semantic web. In: Proceedings of the 18th International Conference on World Wide Web, pp. 611–620. ACM (2009)Google Scholar
  7. 7.
    Grau, B.C., Dragisic, Z., Eckert, K., Euzenat, J., Ferrara, A., Granada, R., Ivanova, V., Jiménez-Ruiz, E., Kempf, A.O., Lambrix, P., et al.: Results of the ontology alignment evaluation initiative 2013. In: Proceedings of the 8th ISWC Workshop on Ontology Matching (OM), pp. 61–100. No commercial editor (2013)Google Scholar
  8. 8.
    Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL querying of large rdf graphs. Proc. VLDB Endowment 4(11), 1123–1134 (2011)Google Scholar
  9. 9.
    Iannone, L., Palmisano, I., Redavid, D.: Optimizing RDF storage removing redundancies: an algorithm. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 732–742. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Isaac, A., Van Der Meij, L., Schlobach, S., Wang, S.: An Empirical Study of Instance-Based Ontology Matching. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic verification. Web Semant.: Sci. Serv. Agents on the World Wide Web 7(3), 235–251 (2009)CrossRefGoogle Scholar
  12. 12.
    Joshi, A.K., Hitzler, P., Dong, G.: Logical linked data compression. In: The Semantic Web: Semantics and Big Data, pp. 170–184. Springer (2013)Google Scholar
  13. 13.
    Joshi, A.K., Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P., Damova, M.: Alignment-based querying of linked open data. In: Meersman, R., et al. (eds.) OTM 2012, Part II. LNCS, vol. 7566, pp. 807–824. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Meier, M.: Towards rule-based minimization of RDF graphs under constraints. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 89–103. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM Sigmod Rec. 33(4), 65–70 (2004)CrossRefGoogle Scholar
  16. 16.
    Noy, N., Stuckenschmidt, H.: Ontology alignment: an annotated bibliography. In: Semantic Interoperability and Integration 4391 (2005)Google Scholar
  17. 17.
    Pichler, R., Polleres, A., Skritek, S., Woltran, S.: Redundancy elimination on RDF graphs in the presence of rules, constraints, and queries. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 133–148. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Urbani, J., Maassen, J., Drost, N., Seinstra, F., Bal, H.: Scalable RDF data compression with MapReduce. Concurrency and Computation: Practice and Experience 25(1), 24–39 (2013)CrossRefGoogle Scholar
  19. 19.
    Wang, S., Englebienne, G., Schlobach, S.: Learning Concept Mappings from Instance Similarity. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Amit Krishna Joshi
    • 1
    Email author
  • Pascal Hitzler
    • 1
  • Guozhu Dong
    • 1
  1. 1.Wright State UniversityDaytonUSA

Personalised recommendations