Contrasting RDF Stream Processing Semantics

  • Minh Dao-TranEmail author
  • Harald Beck
  • Thomas Eiter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9544)


The increasing popularity of RDF Stream Processing (RSP) has led to developments of data models and processing engines which diverge in several aspects, ranging from the representation of RDF streams to semantics. Benchmarking systems such as LSBench, SRBench, CSRBench, and YABench were introduced as attempts to compare different approaches, focusing mainly on the operational aspects. The recent logic-based LARS framework provides a theoretical underpinning to analyze stream processing/reasoning semantics. In this work, we use LARS to compare the semantics of two typical RSP engines, namely C-SPARQL and CQELS, identify conditions when they agree on the output, and discuss situations where they disagree. The findings give insights that might prove to be useful for the RSP community in developing a common core for RSP.


  1. 1.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2006)CrossRefGoogle Scholar
  2. 2.
    Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: A continuous query language for RDF data streams. Int. J. Semant. Comput. 4(1), 3–25 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for analyzing reasoning over streams. In: AAAI (2015)Google Scholar
  4. 4.
    Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - Extending SPARQL to process data streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to streaming data sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax (2014).
  7. 7.
    Dao-Tran, M., Beck, H., Eiter, T.: Contrasting RDF stream processing semantics. Technical report, Institut für Informationssysteme, TU Wien (2015)Google Scholar
  8. 8.
    Dell’Aglio, D., Calbimonte, J.-P., Balduini, M., Corcho, O., Valle, E.D.: On correctness in RDF stream processor benchmarking. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 326–342. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Dell’Aglio, D., Valle, E.D., Calbimonte, J.-P., Corcho, O.: RSP-QL semantics: A unifying query model to explain heterogeneity of RDF stream processing systems. IJSWIS 10(4) (2015)Google Scholar
  10. 10.
    Dindar, N., Tatbul, N., Miller, R.J., Haas, L.M., Botan, I.: Modeling the execution semantics of stream processing engines with SECRET. VLDB J. 22(4), 421–446 (2013)CrossRefGoogle Scholar
  11. 11.
    Cabalar, P.: Answer set programming? In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 334–343. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Groppe, S.: Data Management and Query Processing in Semantic Web Databases. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Harris, S., Seaborne, A.: SPARQL 1.1 Query Language (2013).
  14. 14.
    Kolchin, M., Wetz, P.: Demo: YABench - Yet another RDF stream processing benchmark. In: RSP Workshop (2015)Google Scholar
  15. 15.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34, 16:1–16:45 (2009)CrossRefGoogle Scholar
  16. 16.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked stream data processing engines: Facts and figures. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 300–312. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Polleres, A.: From SPARQL to rules (and back). In: WWW, pp. 787–796 (2007)Google Scholar
  19. 19.
    Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: A streaming RDF/SPARQL benchmark. In: Cudré-Mauroux, p, et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations