Advertisement

PROSE: A Plugin-Based Paraconsistent OWL Reasoner

  • Wenrui Wu
  • Zhiyong Feng
  • Xiaowang ZhangEmail author
  • Xin Wang
  • Guozheng Rao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9544)

Abstract

The study of paraconsistent reasoning with ontologies is especially important for the Semantic Web since knowledge is not always perfect within it. Quasi-classical semantics is proven to rationally draw more meaningful conclusions even from an inconsistent ontology with the stronger inference power of paraconsistent reasoning. In our previous work, we have conceived a quasi-classical framework called prose to provide rich paraconsistent reasoning services for OWL ontologies, whose architecture contains three parts: a classical OWL reasoner, a quasi-classical transformer, and OWL API connecting with them. This paper finally implements prose where quasi-classical transformer is bulit as a plugin for paraconsistent reasoning on classical reasoners. Additionally, we select three popular classical OWL reasoners (i.e., Pellet, HermiT, and FaCT++) and two typical kinds of reasoning services (i.e., QC-consistency checking and QC-classification) for users. As we excepted, prose does exactly enable current classical OWL reasoners to tolerate inconsistency in a simple and convenient way. Furthermore, we evaluate the three reasoners in three dimensions (class, property, individual) and, as a result, those results can amend the analysis of the three reasoners on inconsistent ontologies.

Keywords

Description Logic Reasoning Problem Reasoning Service Classical Reasoner Inference Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank the anonymous reviewers for their comments which helped us to improve the paper. We gratefully acknowledge Zuoquan Lin, Kewen Wang, Guilin Qi, Yue Ma, and Guohui Xiao for discussions and their critical comments on our previous work of quasi-classical desription logics. This work is supported by the program of the National High-tech R&D Program of China (863 Program) under 2013AA013204 and the National Natural Science Foundation of China (NSFC) under 61502336, 61572353, 61373035. Xiaowang Zhang is supported by the project-sponsored by School of Computer Science and Technology in Tianjin University.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of Multiple-Valued Logics, pp. 7–73. Reidel Publishing Company, Boston (1977)Google Scholar
  3. 3.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 5, 29–37 (2001)Google Scholar
  4. 4.
    Bertossi, L., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance. LNCS, vol. 3300. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  5. 5.
    Dentler, K., Cornet, R., Annette, T.T., De Keizer, N.: Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semant. Web 1, 1–5 (2011)Google Scholar
  6. 6.
    Fang, J., Huang, Z., van Harmelen, F.: Contrastive reasoning with inconsistent ontologies. In: Proceedings of WI 2011, IEEE CS, pp. 191–194 (2011)Google Scholar
  7. 7.
    Flouris, G., Huang, Z., Pa,n J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and changes in ontologies. In: Proceedings of AAAI 2006. AAAI Press (2006)Google Scholar
  8. 8.
    Gamma, E., et al.: Design Patterns, p. 175ff. Addison-Wesley Publishing Co, Inc., Reading (1995)Google Scholar
  9. 9.
    Gómez, S.A., Chesñevar, C.I., Simari, G.R.: Reasoning with inconsistent ontologies through argumentation. Appl. Artif. Intell. 24(1&2), 102–148 (2010)CrossRefGoogle Scholar
  10. 10.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for handling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Horridge, M., Bechhofer, S.: The OWL API: a java API for OWL ontologies. Semant. Web 2(1), 11–21 (2011)Google Scholar
  12. 12.
    Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Proceedings of IJCAI 2005, Professional Book Center, pp. 454–459 (2005)Google Scholar
  14. 14.
    Hunter, A.: Reasoning with contradictory information using quasi-classical logic. J. Log. Comput. 10(5), 677–703 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kamide, N.: Paraconsistent description logics revisited. In: Proceedings of the 23rd International Workshop on Description Logics (DL 2010), CEUR Workshop Proceedings, vol. 573 (2010)Google Scholar
  16. 16.
    Lang, C.: Four-valued logics for paraconsistent reasoning. Diplomarbeit von Andreas Christian Lang, Technische Universität Dresden (2006)Google Scholar
  17. 17.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for inconsistent DL-Lite ontologies. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 155–169. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Ma, Y., Hitzler, P., Lin, Z.Q.: Algorithms for paraconsistent reasoning with OWL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 399–413. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Maier, F., Ma, Y., Hitzler, P.: Paraconsistent OWL and related logics. Semant. Web 4(4), 395–427 (2013)Google Scholar
  20. 20.
    Marquis, P., Porquet, N.: Computational aspects of quasi-classical entailment. J. Appl. Non-Classical Logics 11(3&4), 295–312 (2001)MathSciNetzbMATHGoogle Scholar
  21. 21.
    McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview. W3C Recommendation (2009). http://www.w3.org/TR/owl-features/
  22. 22.
    Motik, B.: KAON2 - scalable reasoning over ontologies with large data sets. ERCIM New. 72, 19–20 (2002)Google Scholar
  23. 23.
    Nguyen, L.A., Szałas, A.: Three-valued paraconsistent reasoning for semantic web agents. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010, Part I. LNCS, vol. 6070, pp. 152–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Mu, K.: Responsibility for inconsistency. Int. J. Approx. Reasoning 61, 43–60 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Odintsov, S.P., Wansing, H.: Inconsistency-tolerant description logic. part II: A tableau algorithm for CACL\(^{\text{ c }}\). J. Appl. Logic 6(3), 343–360 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Owl, A.P.I.: A Java API for working with OWL 2 ontologies. http://owlapi.sourceforge.net/
  27. 27.
    ParOWL: Paraconsistent reasoner with OWL. http://neon-toolkit.org/wiki/1.x/ParOWL
  28. 28.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of WWW 2005, pp. 633–640. ACM (2005)Google Scholar
  29. 29.
    Protégé: The protégé ontology editor and knowledge acquisition system. Website http://protege.stanford.edu/
  30. 30.
    Qi, G., Du, J.: Model-based revision operators for terminologies in description logics. In: Proceedings of IJCAI 2009, pp. 891–897. ACM (2009)Google Scholar
  31. 31.
    Qi, G., Liu, W., Bell, D.A.: A revision-based approach to handling inconsistency in description logics. Artif. Intell. Rev. 26(1&2), 115–128 (2006)CrossRefGoogle Scholar
  32. 32.
    Ross Anderson, A., Belnap, N.: The logic of relevance and necessity, vol. 1. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  33. 33.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proceedings of IJCAI 2003, Morgan Kaufmann, pp. 355–362 (2003)Google Scholar
  34. 34.
    Shearer, R., Motik, B., Horrocks, I.: A highly-efficient OWL reasoner. In: OWLED 2008, vol. 432 of CEUR Workshop Proceedings (2008)Google Scholar
  35. 35.
    Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)CrossRefGoogle Scholar
  36. 36.
    Straccia, U.: A sequent calculus for reasoning in four-valued description logics. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 343–357. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  37. 37.
    TONES: Ontology repository. University of Manchester (2008). http://owl.cs.manchester.ac.uk/repository/
  38. 38.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  39. 39.
    Zhang, X., Lin, Z.: An argumentation framework for description logic ontology reasoning and management. J. Intell. Inf. Syst. 40(3), 375–403 (2013)CrossRefGoogle Scholar
  40. 40.
    Zhang, X., Lin, Z.: Quasi-classical description logic. Multiple-Valued Logic Soft. Comput. 18(3&4), 291–327 (2012)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Zhang, X., Lin, Z., Wang, K.: Towards a paradoxical description logic for the semantic web. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 306–325. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  42. 42.
    Zhang, X., Xiao, G., Lin, Z., Van den Bussche, J.: Inconsistency-tolerant reasoning with OWL DL. Int. J. Approx. Reasoning 55(2), 557–584 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zhang, X., Wang, K., Wang, Z., Ma, Y., Qi, G.: A distance-based paraconsistent semantics for DL-Lite. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM 2015. LNCS (LNAI), vol. 9403, pp. 1–13. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  44. 44.
    Zhang, X., Wang, K., Wang, Z., Ma, Y., Qi, G., Feng, Z.: A distance-based framework for inconsistency-tolerant reasoning, inconsistency measurement in DL-Lite. Technical report: TR20150928 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wenrui Wu
    • 1
  • Zhiyong Feng
    • 1
  • Xiaowang Zhang
    • 1
    Email author
  • Xin Wang
    • 1
  • Guozheng Rao
    • 1
  1. 1.School of Computer Science and TechnologyTianjin UniversityTianjinChina

Personalised recommendations