Advertisement

Organic Light-Emitting Diodes (OLEDs): Working Principles and Device Technology

  • Umberto GiovanellaEmail author
  • Mariacecilia Pasini
  • Chiara Botta
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 92)

Abstract

Organic electronics is a field of material science that has encountered a rapid advance over the last few decades and has now reached the commercial marketplace. Its most relevant example is represented by Organic Light-Emitting Diodes (OLEDs) technology, able to combine the device low energy consumption and low production costs with many additional appealing features, such as large emitting surfaces, transparency and flexibility, color-tunability and color-quality. These unique properties of OLEDs allow to design low cost, large area flexible displays and white lighting sources that can fit to many different environmental requirements, resulting in tremendous benefits in imaging, lighting, automotive, transportation, communication, agriculture and medicine.

This chapter provides an overview on the basic working principles of the devices with the analysis of the different kinds of emission mechanisms and the methods to improve quantum efficiency by optimization of the device architecture. The main classes of materials employed in OLED technology are presented focusing on few representative examples while the challenges to be faced by future research on material and device stability are discussed in view of commercialization applications. Some of the outstanding results recently obtained in white OLEDs (WOLEDs), able to produce a revolution in the next generation lighting industry, are also presented at the end of the chapter.

Keywords

Microlens Array Delay Fluorescence Hole Transport Layer Triplet Exciton Correlate Colour Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Acronyms

ηPL

Efficiency of photoluminescence

CCT

Colour temperature

CIE

Commission Internationale de l’Eclairage

CRI

Colour rendering index

CT

Charge transfer

DF

Delayed fluorescence

EA

Electron affinity

EBL

Electron blocking layers

EIL

Electron injection layers

EL

Electroluminescence

EML

Emitting material layer

EQE

External quantum efficiency

ET

Energy transfer

ET

Triplet energy levels

ETL

Electron transport layers

FRET

Förster resonance ET

HBL

Hole blocking layers

HIL

Hole injection layers

HOMO

Highest occupied molecular orbital

HTL

Hole transport layers

IC

Internal conversion

ICS

Inter system crossing

IP

Ionization potential

IQE

Internal quantum efficiency of electroluminescence

ITO

Indium tin oxide

J0

Critical current density

K

Kelvin

L

Luminance

LE

Luminous or current efficiency

LUMO

Lowest unoccupied molecular orbital

MW

Molecular weight

OLED

Organic light emitting diode

PE

Power efficiencies

PHOLED

Phosphorescent OLED

PL

Photoluminescence

PLED

Polymer OLED

RISC

Reverse inter system crossing

SMOLED

Small molecule OLED

TADF

Thermally activated delayed fluorescence

Tg

Glass transition temperatures

TTA

Triplet–triplet annihilation

V

Applied voltage

WOLED

White light organic emitting diode

ΔEST

Singlet-triplet energy splitting

ηC

Fraction of light coupled out of the structure into the viewing direction

ϕ

Work function

References

  1. 1.
    Forrest SR (2004) Nature 428:911CrossRefGoogle Scholar
  2. 2.
    Kamtekar KT, Monkman AP, Bryce MR (2010) Adv Mater 22:572CrossRefGoogle Scholar
  3. 3.
    Adachi C (2014) Jpn J Appl Phys 53:060101CrossRefGoogle Scholar
  4. 4.
    Helfrich W, Schneider WG (1965) Phys Rev Lett 14:229CrossRefGoogle Scholar
  5. 5.
    Tang CW, VanSlyke SA (1987) Appl Phys Lett 51:913CrossRefGoogle Scholar
  6. 6.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Nature 347:539CrossRefGoogle Scholar
  7. 7.
    Wang J, Zhang F, Zhang J, Tang W, Tang A, Peng H, Xu Z, Teng F, Wang Y (2013) J Photochem Photob C Photochem Rev 17:69CrossRefGoogle Scholar
  8. 8.
    Kim M, Kyu Jeon S, Hwang S-H, Yeob Lee J (2015) Adv Mater 27:2515CrossRefGoogle Scholar
  9. 9.
    Thejokalyani N, Dhoble SJ (2014) Renew Sust Energ Rev 32:448CrossRefGoogle Scholar
  10. 10.
    Gather MC, Köhnen A, Meerholz K (2011) Adv Mater 23:233CrossRefGoogle Scholar
  11. 11.
    Elliott PIP (2013) Annu Rep Prog Chem Sect A Inorg Chem 109:360CrossRefGoogle Scholar
  12. 12.
    Pope M, Swenberg CE (1982) Electronic processes in organic crystals. Clarendon, OxfordGoogle Scholar
  13. 13.
    Dong H, Fu X, Liu J, Wang Z, Hu W (2013) Adv Mater 25:6158CrossRefGoogle Scholar
  14. 14.
    Facchetti A (2011) Chem Mater 23:733CrossRefGoogle Scholar
  15. 15.
    Kuik M, Wetzelaer G-JAH, Nicolai HT, Craciun NI, De Leeuw DM, Blom PWM (2014) Adv Mater 26:512CrossRefGoogle Scholar
  16. 16.
    Chou P-T, Chi Y (2007) Chem Eur J 13:380CrossRefGoogle Scholar
  17. 17.
    Kim SY, Jeong WI, Mayr C, Park YS, Kim KH, Lee JH, Moon CK, Brütting W, Kim JJ (2013) Adv Funct Mater 23:3896CrossRefGoogle Scholar
  18. 18.
    Chiang C-J, Kimyonok A, Etherington MK, Griffiths GC, Jankus V, Turksoy F, Monkman AP (2013) Adv Funct Mater 23:739CrossRefGoogle Scholar
  19. 19.
    Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C (2014) Nat Photonics 8:326CrossRefGoogle Scholar
  20. 20.
    Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W (2014) Adv Mater 26:7931CrossRefGoogle Scholar
  21. 21.
    Cariati E, Lucenti E, Botta C, Giovanella U, Marinotto D, Righetto S (2015) Coord Chem Revi 306:566Google Scholar
  22. 22.
    Zhu Z-Q, Fleetham T, Turner E, Li J (2015) Adv Mater 27:2533CrossRefGoogle Scholar
  23. 23.
    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Nature 492:234CrossRefGoogle Scholar
  24. 24.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  25. 25.
    Chen J, Zhao F, Ma D (2014) Mater Today 17:175CrossRefGoogle Scholar
  26. 26.
    Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR (2006) Nature 440:908CrossRefGoogle Scholar
  27. 27.
    Schwartz G, Reineke S, Conrad Rosenow T, Walzer K (2009) K Leo Adv Funct Mater 19:1319CrossRefGoogle Scholar
  28. 28.
    Schwartz G, Reineke S, Conrad Rosenow T, Walzer K (2007) K Leo Adv Mater 19:3672CrossRefGoogle Scholar
  29. 29.
    Rosenow TC, Furno M, Reineke S, Olthof S, Lüssem B, Leo K (2010) J Appl Phys 108:113113CrossRefGoogle Scholar
  30. 30.
    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K (2009) Nature 459:234CrossRefGoogle Scholar
  31. 31.
    Gu G, Garbuzov DZ, Burrows PE, Vendakesh S, Forrest SR, Thompson ME (1997) Opt Lett 22:396CrossRefGoogle Scholar
  32. 32.
    Forrest SR, Bradley DDC, Thompson ME (2003) Adv Mater 15:1043CrossRefGoogle Scholar
  33. 33.
    Gong X, Robinson MR, Ostrowski JC, Moses D, Bazan GC, Heeger AJ (2002) Adv Mater 14:581CrossRefGoogle Scholar
  34. 34.
    Murawski C, Leo K, Gather MC (2013) Adv Mater 25:6801CrossRefGoogle Scholar
  35. 35.
    Baldo MA, Adachi C, Forrest SR (2000) Phys Rev B 62:10967CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Gaspar DJ, Polikarpov E (2015) OLED fundamentals: materials, devices, and processing of organic light, CRC Press, Boca Raton (chapter 2, Substrates, A. Bhabdari, D.J. Gaspar)Google Scholar
  38. 38.
    Facchetti A, Marks TJ (2010) “Transparent electronics”. From synthesis to applications. Wiley, ChichesterCrossRefGoogle Scholar
  39. 39.
    Yang Y, Westerweele E, Zhang C, Smith P, Heeger AJ (1995) J Appl Phys 77:694CrossRefGoogle Scholar
  40. 40.
    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12(7):48CrossRefGoogle Scholar
  41. 41.
    Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2010) ACS Nano 4(1):43CrossRefGoogle Scholar
  42. 42.
    Kwong RC, Nugent MR, Michalski L, Ngo T, Rajan K, Tung Y-J, Weaver MS, Zhou TX, Hack M, Thompson ME, Forrest SR, Brown JJ (2002) Appl Phys Lett 81:162CrossRefGoogle Scholar
  43. 43.
    Lamansky S, Djurovich PI, Abdel-Razzaq F, Garon S, Murphy DL, Thompson ME (2002) J Appl Phys 92:1570CrossRefGoogle Scholar
  44. 44.
    VanSlyke SA, Chen CH, Tang CW (1996) Appl Phys Lett 69:2160CrossRefGoogle Scholar
  45. 45.
    Adachi C, Tsutsui T, Saito S (1991) Optoelectron Devices Technol 6:25Google Scholar
  46. 46.
    Schein LB (1992) Philos Mag B 65:795CrossRefGoogle Scholar
  47. 47.
    Salbeck J, Yu N, Bauer J, Weissortel F, Bestgen H (1997) Synth Met 91:209CrossRefGoogle Scholar
  48. 48.
    Sun Y, Forrest SR (2007) Appl Phys Lett 91:236503Google Scholar
  49. 49.
    Eom S-H, Zheng Y, Chopra N, Lee J, So F, Xue J (2008) Appl Phys Lett 93:123309CrossRefGoogle Scholar
  50. 50.
    Lee CW, Lee JY (2013) Org Electron 14:370CrossRefGoogle Scholar
  51. 51.
    Giovanella U, Betti P, Bolognesi A, Destri S, Melucci M, Pasini M, Porzio W, Botta C (2010) Org Electron 11:2012CrossRefGoogle Scholar
  52. 52.
    Zuniga CA, Barlow S, Marder SR (2011) Chem Mater 23:658CrossRefGoogle Scholar
  53. 53.
    Huang F, Cheng Y-J, Zhang Y, Liu MS, Jen AK-Y (2008) J Mater Chem 18:4495CrossRefGoogle Scholar
  54. 54.
    Scopelliti R, Zuppiroli L, Graetzel M, Nazeeruddin MK (2008) Inorg Chem 47:6575CrossRefGoogle Scholar
  55. 55.
    Jou JH, Hsu MF, Wang WB, Chin CL, Chung YC, Chen CT, Shyue JJ, Shen SM, Wu MH, Chang WC, Liu CP, Chen SZ, Chen HY (2009) Chem Mater 21:2565CrossRefGoogle Scholar
  56. 56.
    Ryu DW, Kim KS, Choi CK, Park YI, Kang IN, Park JW (2007) Curr Appl Phys 7:396CrossRefGoogle Scholar
  57. 57.
    Cheng JA, Chen CH, Liao CH (2004) Chem Mater 16:2862CrossRefGoogle Scholar
  58. 58.
    Duan L, Hou L, Lee T-W, Qiao J, Zhang D, Dong G, Wang L, Qiu Y (2010) J Mater Chem 20:6392CrossRefGoogle Scholar
  59. 59.
    Li TX, Yamamoto T, Lan HL, Kido J (2004) Polym Adv Technol 15:266CrossRefGoogle Scholar
  60. 60.
    Kim SH, Cho I, Sim MK, Park S, Young Park S (2011) J Mater Chem 21:9139CrossRefGoogle Scholar
  61. 61.
    Wu C-H, Chien C-H, Hsu F-M, Shih P-I, Shu C-F (2009) J Mater Chem 19:1464CrossRefGoogle Scholar
  62. 62.
    Ku S-Y, Chi L-C, Hung W-Y, Yang S-W, Tsai T-C, Wong K-T, Chenc Y-H, Wu C-I (2009) J Mater Chem 19:773CrossRefGoogle Scholar
  63. 63.
    Bucinskas A, Volyniuk D, Danyliv Y, Grazulevicius JV, Baryshnikov G, Minaev B, Ivaniuk K, Cherpak V, Stakhira P (2015) RSC Adv 5:78150CrossRefGoogle Scholar
  64. 64.
    Zhang H, Xu X, Qiu W, Qi T, Gao X, Liu Y, Lu K, Du C, Yu G, Liu Y (2008) J Phys Chem C 112:34Google Scholar
  65. 65.
    Gifford AP, Zhu Y, Lou Y, Jenekhe SA (2006) Chem Mater 18:20Google Scholar
  66. 66.
    Kulkarni AP, Kong X, Jenekhe SA (2006) Adv Funct Mater 16:1057, J.M. HancockCrossRefGoogle Scholar
  67. 67.
    Chiang CL, Wu MT, Dai DC, Wen YS, Wang JK, Chen CT (2005) Adv Funct Mater 15:231CrossRefGoogle Scholar
  68. 68.
    Wei P, Duan L, Zhang DQ, Qiao J, Wang LD, Wang RJ, Dong GF, Qiu Y (2008) J Mater Chem 18:806CrossRefGoogle Scholar
  69. 69.
    Qiu Y, Wei P, Zhang DQ, Qiao J, Duan L, Li YK, Gao YD, Wang LD (2006) Adv Mater 18:1607CrossRefGoogle Scholar
  70. 70.
    Yang Y, Zhou Y, He Q-G, He C, Yang C-H, Bai F-L, Li Y-F (2009) J Phys Chem B 113:7745CrossRefGoogle Scholar
  71. 71.
    Thangthong A, Prachumrak N, Sudyoadsuk T, Namuangruk S, Keawin T, Jungsuttiwonga S, Kungwan N (2015) V Promarak Org El 21:117CrossRefGoogle Scholar
  72. 72.
    Yeh H-C, Chan L-H, Wua W-C, Chen C-T (2004) J Mater Chem 14:1293CrossRefGoogle Scholar
  73. 73.
    Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Chem Rev 109:897CrossRefGoogle Scholar
  74. 74.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Nature 345:539CrossRefGoogle Scholar
  75. 75.
    Braun D, Heeger AJ, Kroemer H (1991) J Electron Mater 20:945CrossRefGoogle Scholar
  76. 76.
    Bernius M, Inbasekaran M, O’Brien J, Wu W (2000) Adv Mater 12:1737CrossRefGoogle Scholar
  77. 77.
    Bernius M, Inbasekaran M, Woo E, Wu W, Wujkowski L (2000) J Mater Sci Mater Electron 11:111CrossRefGoogle Scholar
  78. 78.
    Bernius M, Inbasekaran M, Woo E, Wu W, Wujkowski L (2000) Thin Solid Films 363:55CrossRefGoogle Scholar
  79. 79.
    Inbasekaran M, Woo E, Bernius M, Wujkowski L (2000) Synth Met 111–112:397CrossRefGoogle Scholar
  80. 80.
    Grem G, Leditzky G, Ullrich B, Leising B (1992) Adv Mater 4:36CrossRefGoogle Scholar
  81. 81.
    Roncali J (1992) Chem Rev 92(4):711CrossRefGoogle Scholar
  82. 82.
    Bolognesi A, Pasini M (2007) Synthetic methods for semiconducting polymers, Semiconducting polymers. Wiley-VCH, WeinheimGoogle Scholar
  83. 83.
    Pal B, Yen W-C, Yang J-S, Su W-F (2007) Macromolecules 40(23):8189CrossRefGoogle Scholar
  84. 84.
    Chen P, Yang G, Liu T, Li T, Wang M, Huang W (2006) Polym Int 55:473, and references thereinCrossRefGoogle Scholar
  85. 85.
    Giovanella U, Botta C, Galeotti F, Vercelli B, Battiato S, Pasini M (2013) J Mater Chem C 1(34):5322CrossRefGoogle Scholar
  86. 86.
    Morii K, Ishida M, Takashima T, Shimoda T, Wang Q, Nazeeruddin MK, Grätzel M (2006) Appl Phys Lett 89:183510CrossRefGoogle Scholar
  87. 87.
    Kabra D, Lu LP, Song MH, Snaith HJ, Friend RH (2010) Adv Mater 22:3194CrossRefGoogle Scholar
  88. 88.
    Wu W-C, Lee W-Y, Chen W-C (2006) Macromol Chem Phys 207:1131CrossRefGoogle Scholar
  89. 89.
    Wu W-C, Liu C-L, Chen W-C (2006) Polymer 47:527CrossRefGoogle Scholar
  90. 90.
    Pasini M, Giovanella U, Betti P, Bolognesi A, Botta C, Destri S, Porzio W (2009) ChemPhysChem 10:2143CrossRefGoogle Scholar
  91. 91.
    Hung M-C, Liao J-L, Chen S-A, Chen S-H, Su A-C (2005) J Am Chem Soc 127:14576CrossRefGoogle Scholar
  92. 92.
    Sung H-H, Lin H-C (2004) Macromolecules 37(21):7945CrossRefGoogle Scholar
  93. 93.
    Lu S, Liu T, Ke L, Ma D-G, Chua S-J, Huang W (2005) Macromolecules 38:8494CrossRefGoogle Scholar
  94. 94.
    Giovanella U, Betti P, Botta C, Destri S, Moreau J, Pasini M, Porzio W, Vercelli B, Bolognesi A (2010) Chem Mater 23(3):810CrossRefGoogle Scholar
  95. 95.
    Li J, Liu D (2009) J Mater Chem 19:7584CrossRefGoogle Scholar
  96. 96.
    Burn PL, Lo S-C, Samuel IDW (2007) Adv Mater 19:1675CrossRefGoogle Scholar
  97. 97.
    Li J, Li Q, Liu D (2011) ACS Appl Mater Interfaces 3:2099CrossRefGoogle Scholar
  98. 98.
    King KA, Spellane PJ, Watts RJ (1985) J Am Chem Soc 107:1431CrossRefGoogle Scholar
  99. 99.
    Su S-J, Gonmori E, Sasabe H, Kido J (2008) Adv Mater 20:4189Google Scholar
  100. 100.
    Zhen Y, Eom S-H, Chopra N, Lee J, So F, Xue J (2008) Appl Phys Lett 92:223301CrossRefGoogle Scholar
  101. 101.
    Xu M, Zhou R, Wang G, Xiao Q, Du W, Che G (2008) Inorg Chim Acta 361:2407CrossRefGoogle Scholar
  102. 102.
    Ragni R, Plummer EA, Brunner K, Hofstraat JW, Babudri F, Farinola GM, Naso F, De Cola L (2006) J Mater Chem 16:1161CrossRefGoogle Scholar
  103. 103.
    Lee SJ, Park K-M, Yang K, Kang Y (2009) Inorg Chem 48:1030CrossRefGoogle Scholar
  104. 104.
    Hang X-C, Fleetham T, Turner E, Brooks J, Li J (2013) Angew Chem Int Ed 52:6753CrossRefGoogle Scholar
  105. 105.
    Fukase A, Dao KLT, Kido J (2002) Polym Adv Technol 13:601CrossRefGoogle Scholar
  106. 106.
    Rehmann N, Hertel D, Meerholz K, Becker H, Heun S (2007) Appl Phys Lett 91:103507CrossRefGoogle Scholar
  107. 107.
    Lamansky S, Djurovich P, Murphy D, Razzaq FA, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304CrossRefGoogle Scholar
  108. 108.
    Zhao WQ, Ran GZ, Liu ZW, Bian ZQ, Sun K, Xu WJ, Huang CH, Qin GG (2008) Opt Express 16:5158CrossRefGoogle Scholar
  109. 109.
    Cocchi M, Virgili D, Fattori V, Rochester DL, Williams JAG (2007) Adv Funct Mater 17:285CrossRefGoogle Scholar
  110. 110.
    Ho C-L, Li H, Wong W-Y (2014) J Organomet Chem 751:261CrossRefGoogle Scholar
  111. 111.
    Freund C, Porzio W, Giovanella U, Vignali F, Pasini M, Destri S, Mech A, Di Pietro S, Di Bari L, Mineo P (2011) Inorg Chem 50(12):5417CrossRefGoogle Scholar
  112. 112.
    Zhou G-J, Wong W-Y, Yao B, Xie Z, Wang L (2007) Angew Chem Int Ed 46:1149CrossRefGoogle Scholar
  113. 113.
    Chang Y-L, Puzzo DP, Wang Z, Helander MG, Qiu J, Castrucci J, Lu Z-H (2012) Phys Status Solidi C 9:2537CrossRefGoogle Scholar
  114. 114.
    Wu F-I, Su H-J, Shu C-F, Luo L, Diau W-G, Cheng C-H, Duan J-P, Lee G-H (2005) J Mater Chem 15:1035CrossRefGoogle Scholar
  115. 115.
    Ho C-L, Chi L-C, Hung W-Y, Chen W-J, Lin Y-C, Wu H, Mondal E, Zhou G-J, Wong K-T, Wong W-Y (2012) J Mater Chem 22:215CrossRefGoogle Scholar
  116. 116.
    Xia ZY, Xiao X, Su JH, Chang CS, Chen CH, Li DL, Tian H (2009) Synth Met 159:1782CrossRefGoogle Scholar
  117. 117.
    Hu Z, Wang Y, Shi D, Tan H, Li X, Wang L, Zhu W, Cao Y (2010) Dyes Pigment 86:166CrossRefGoogle Scholar
  118. 118.
    Fukagawa H, Shimizu T, Hanashima H, Osada Y, Suzuki M, Fujikake H (2012) Adv Mater 24:5099CrossRefGoogle Scholar
  119. 119.
    Jou J-H, Sun M-C, Chou H-H, Li C-H (2005) Appl Phys Lett 87:043508CrossRefGoogle Scholar
  120. 120.
    Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Adv Mater 23:926CrossRefGoogle Scholar
  121. 121.
    Watanabe K, Kanai D, Tsuzuki T, Takanaga E, Tokito S (2007) J Photopolym Sci Technol 20:39CrossRefGoogle Scholar
  122. 122.
    Wu M-F, Yeh S-J, Chen C-T, Murayama H, Tsuboi T, Li W-S, Chao I, Liu S-W, Wang J-K (2007) Adv Funct Mater 17:18879Google Scholar
  123. 123.
    Ye T, Shao S, Chen J, Wang L, Ma D (2011) ACS Appl Mater Interface 3:410CrossRefGoogle Scholar
  124. 124.
    Jiang W, Duan L, Qiao J, Zhang D, Dong G, Wang L, Qiu Y (2010) J Mater Chem 20:6131CrossRefGoogle Scholar
  125. 125.
    Yang XH, Jaiser F, Klinger S, Neher D (2006) Appl Phys Lett 88:02110Google Scholar
  126. 126.
    Tao Y, Yang C, Qin J (2011) Chem Soc Rev 40:2943CrossRefGoogle Scholar
  127. 127.
    Burrows PE, Padmaperuma AB, Sapochak LS, Djurovich P, Thompson ME (2006) Appl Phys Lett 88:183503CrossRefGoogle Scholar
  128. 128.
    Jeon SO, Yook KS, Joo CW, Lee JY (2009) Appl Phys Lett 94:013301CrossRefGoogle Scholar
  129. 129.
    Yook KS, Lee JY (2014) Adv Mater 26:4218CrossRefGoogle Scholar
  130. 130.
    Jeon SO, Lee JY (2012) J Mater Chem 22:4233CrossRefGoogle Scholar
  131. 131.
    Su S-J, Sasabe H, Takeda T, Kido J (2008) Chem Mater 20:1691CrossRefGoogle Scholar
  132. 132.
    Kim H, Byun Y, Das RR, Choi BK, Ahn PS (2007) Appl Phys Lett 91:093512CrossRefGoogle Scholar
  133. 133.
    Cai M, Xiao T, Hellerich E, Chen Y, Shinar R, Shinar J (2011) Adv Mater 23:3590CrossRefGoogle Scholar
  134. 134.
    Jankus V, Monkman AP (2011) Adv Funct Mater 21:3350–3356CrossRefGoogle Scholar
  135. 135.
    Ahmed E, Earmme T, Jenekhe SA (2011) Adv Funct Mater 21:3889CrossRefGoogle Scholar
  136. 136.
    Yang X, Neher D, Hertel D, Däubler TK (2004) Adv Mater 16:161CrossRefGoogle Scholar
  137. 137.
    Méhes G, Nomura H, Zhang Q, Nakagawa T, Adachi C (2012) Angew Chem Int Ed 51:11311CrossRefGoogle Scholar
  138. 138.
    Lee SY, Yasuda T, Nomura H, Adachi C (2012) Appl Phys Lett 101:093306CrossRefGoogle Scholar
  139. 139.
    Nakagawa T, Ku S-Y, Wong K-T, Adachi C (2012) Chem Commun 9580Google Scholar
  140. 140.
    Nakanotani H, Masui K, Nishide J, Shibata T, Adachi C (2013) Sci Rep 3:2127CrossRefGoogle Scholar
  141. 141.
    Zhang Q, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C (2012) J Am Chem Soc 134:14706CrossRefGoogle Scholar
  142. 142.
    Li J, Nakagawa T, MacDonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C (2013) Adv Mater 25:3319CrossRefGoogle Scholar
  143. 143.
    Lee SY, Yasuda T, Yang YS, Zhang Q, Adachi C (2014) Angew Chem Int Edn 53:6402CrossRefGoogle Scholar
  144. 144.
    Kawano K, Nagayoshi K, Yamaki T, Adachi C (2014) Org Electron 15:1695CrossRefGoogle Scholar
  145. 145.
    Wang H, Xie L, Peng Q, Meng L, Wang Y, Yi Y, Wang P (2014) Adv Mater 26:5198CrossRefGoogle Scholar
  146. 146.
    Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA (2004) Chem Mater 16:4556CrossRefGoogle Scholar
  147. 147.
    Hughes G, Bryce MR (2005) J Mater Chem 15:94CrossRefGoogle Scholar
  148. 148.
    Jeon SO, Jang SE, Son HS, Lee JY (2011) Adv Mater 23:1436CrossRefGoogle Scholar
  149. 149.
    Yook KS, Lee JY (2011) Org Electron 12:1293CrossRefGoogle Scholar
  150. 150.
    Xiao L, Su S-J, Agata Y, Lan H, Kido J (2009) Adv Mater 21:1271CrossRefGoogle Scholar
  151. 151.
    Tanaka D, Agata Y, Takeda T, Watanabe S, Kido J (2007) Jpn J Appl Phys 46:L117CrossRefGoogle Scholar
  152. 152.
    Liu B, Bazan GC (2012) Conjugated polyelectrolytes: fundamentals and applications. Wiley-VCH, Weinheim, ISBN: 978-3-527-33143-7Google Scholar
  153. 153.
    Lee BH, Jung IH, Woo HY, Shim H-K, Kim G, Lee K (2014) Adv Funct Mater 24:1100 (and ref therein)CrossRefGoogle Scholar
  154. 154.
    Hu Z, Zhang K, Huang F, Cao Y (2015) Chem Commun 51:5572CrossRefGoogle Scholar
  155. 155.
    Hofmann S, Thomschke M, Lüssem B, Leo K (2011) Opt Express 19(s6):A1250CrossRefGoogle Scholar
  156. 156.
    Tyan Y-S, Photonics J (2011) Energy 1:011009Google Scholar
  157. 157.
    Thejo Kalyani N, Dhoble SJ (2012) Renew Sustain Energy Rev 16:2696CrossRefGoogle Scholar
  158. 158.
    Chiba T, Pu Y-J, Kido J (2015) Adv Mater 27:4681CrossRefGoogle Scholar
  159. 159.
    Yu L, Liu J, Hu S, He R, Yang W, Wu H, Peng J, Xia R, Bradley DDC (2013) Adv Funct Mater 23:4366CrossRefGoogle Scholar
  160. 160.
    Zhang B, Tan G, Lam C-S, Yao B, Ho C-L, Liu L, Xie Z, Wong W-Y, Ding J, Wang L (2012) Adv Mater 24:1873CrossRefGoogle Scholar
  161. 161.
    Sasabe H, Takamatsu J, Motoyama T, Watanabe S, Wagenblast G, Langer N, Molt O, Fuchs E, Lennartz C, Kido J (2010) Adv Mater 22:5003CrossRefGoogle Scholar
  162. 162.
    Tu GL, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS (2004) Appl Phys Lett 85:2172CrossRefGoogle Scholar
  163. 163.
    Liu J, Zhou QG, Cheng YX, Geng YH, Wang LX, Ma DG, Jing XB, Wang FS (2006) Adv Funct Mater 16:957CrossRefGoogle Scholar
  164. 164.
    Shao S, Ding J, Wang L, Jing X, Wang F (2012) J Am Chem Soc 134:20290CrossRefGoogle Scholar
  165. 165.
    Cocchi M, Kalinowski J, Murphy L, Williams JAG, Fattori V (2010) Org Electron 11:388CrossRefGoogle Scholar
  166. 166.
    Nishide J, Nakanotani H, Hiraga Y, Adachi C (2014) Appl Phys Lett 104:233304Google Scholar
  167. 167.
    Higuchi T, Nakanotani H, Adachi C (2015) Adv Mater 27:2019Google Scholar
  168. 168.
    Aizawa N, Pu Y-J, Watanabe M, Chiba T, Ideta K, Toyota N, Igarashi M, Suzuri Y, Sasabe H, Kido J (2014) Nat Commun 5:5756Google Scholar
  169. 169.
    Gather MC, Rein S (2015) J Photon Energy 5:057607–1CrossRefGoogle Scholar
  170. 170.
    Yabu H, Shimomura M (2005) Langmuir 21:1709CrossRefGoogle Scholar
  171. 171.
    Galeotti F, Mróz W, Scavia G, Botta C (2013) Org El 14:212CrossRefGoogle Scholar
  172. 172.
    Ou Q-D, Zhou L, Li Y-Q, Shen S, Chen J-D, Li C, Wang Q-K, Lee S-T, Tang J-X (2014) Adv Funct Mater 24:7249CrossRefGoogle Scholar
  173. 173.
    Duan L, Zhang D, Wu K, Huang X, Wang L, Qiu Y (2011) Adv Funct Mater 21:3540CrossRefGoogle Scholar
  174. 174.
    Ye E, Chee PL, Prasad A, Fang X, Owh C, Jing Jing Yeo V, Jun Loh X (2014) Mater Today 17:194–202CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Umberto Giovanella
    • 1
    Email author
  • Mariacecilia Pasini
    • 1
  • Chiara Botta
    • 1
  1. 1.Istituto per lo Studio delle Macromolecole (ISMAC), CNRMilanItaly

Personalised recommendations